Citation: HE Xi-wang, XIAO Yong, JIA Li-tao, LI De-bao, HOU Bo, WANG Jun-gang. Effects of phosphating process of MoP catalyst on hydrogenation of acetic acid to ethanol[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(3): 323-328. shu

Effects of phosphating process of MoP catalyst on hydrogenation of acetic acid to ethanol

Figures(7)

  • A series of molybdenum phosphide (MoP) catalysts for the hydrogenation of acetic acid to ethanol were successfully synthesized and identified by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Scanning electron microscope (SEM). The results reveal that MoP2O7 and MoO2 exist on the catalyst surface together with MoP. MoP or the synergistic effects of MoP2O7 and MoO2 species play roles in hydrogenation of acetic acid to ethanol. Phosphating temperature significantly affects the formation and dispersion of phosphide. A low phosphating temperature is not sufficient for the formation of MoP, but a high phosphating temperature leads to the agglomeration of MoP. The catalyst reduced at 650℃ has the highest hydrogenation activity and its P/Mo molar ratio is 1.0.
  • 加载中
    1. [1]

      ZHOU M C, ZHANG H T, MA H F, YING W Y. The catalytic properties of K modified PtSn/Al2O3 catalyst for acetic acid hydrogenation to ethanol[J]. Fuel, 2016,144(1):115-123.  

    2. [2]

      ONYESTYAK G. Ni/silica based bimetallic catalysts by solid-state co-reduction of admixed metal oxides for acetic acid hydroconversion to ethanol[J]. Res Chem Intermed, 2007,38(2):1-4.  

    3. [3]

      XIE Jian-guo, WANG An-jie, LI Xiang, HU Yong-kang. Preparation of MCM-41 supported molybdenum phosphide hydrodesulfurization catalyst[J]. Petro Process Petrochem, 2009,5(4):496-502.  

    4. [4]

      PEYMAN F, LIU J. Impact of volatile fatty acid recovery on economics of ethanol production from brown algae via mixed alcohol synthesis[J]. Chem Eng Res Des, 2015,98(1):107-122.  

    5. [5]

      LI Feng-yan, LI Qing-jie, ZHAO Tian-bo, SUN Gui-da, LI Cui-qing. Characteristic of quinoline hydrodenitrogenation and dibenzothiophene hydrodesulfurization over molubdenum phosphide catalysts[J]. J Petrochem Univ, 2006,19(2):001-004.  

    6. [6]

      ZHANG S B, DUAN X P, YE L M, LIN H Q, XIE Z X, YUAN Y Z. Production of ethanol by gas phase hydrogenation of acetic acid over carbon nanotube-supported Pt-Sn nanoparticles[J]. Catal Today, 2013,215(1):260-266.  

    7. [7]

      CLARK P, WANG X, OYANA S T. Characterization of silica supported molybdenum and tungsten phosphide hydroprocessing catalysts by 31P nuclear magnetic resonance spectroscopy[J]. J Catal, 2002,207(1):256-265.  

    8. [8]

      YAN Jing-sen, WANG An-jie, LI Xiang, LU Mo-hong, HU Yong-kang. Hydrodenitrogenation of quinolone catalyzed by SiO2-supported molybdenum phosphide[J]. Acta Pet Sin (Pet Process Set), 2006,22(3):28-32.  

    9. [9]

      FENG Z C, LIANG C H, WU W C, WU Z L, SANTENE R A V, LI C. Carbon monoxide adsorption on molybdenum phosphides:Fourier transform infrared spectroscopic and density functional theory studies[J]. Phys Chem, 2003,107(1):13698-13702.  

    10. [10]

      LIN Yin-chun, LI Xian-cai, YANG Ai-jun, GUO Hui-rui. Effect of preparation condition to molybdenum phosphide catalysts for CO2 reforming of CH4[J]. J Nanchang Univ, 2012,34(4):312-315.  

    11. [11]

      OYAMA S T, CLARK P, LEDEN E J, REQUEJO F G. XAFS characterization of highly active alumina-supported molybdenum phosphide catalysts (MoP/Al2O3) for hydrotreating[J]. Phys Chem, 2001,105(1):4961-4966.  

    12. [12]

      QU Ben-lian, CHAI Yong-ming, XIANG Chun-e, ZHANG Jing-cheng, LIU Chen-guang. In-situ XRD study of nickel phosphide and molybdenum phosphide catalysts[J]. Acta Pet Sin (Pet Process Set), 2009,25(4):496-502.  

    13. [13]

      PEREZ-ROMO P, POTVIN C, MANOLI J M, CHEHIMI M, EGA-MARIADASSOU G D. Phosphorus-doped molybdenum oxynitrides and oxygen-modified molybdenum carbides:Synthesis, characterization and determination of turnoverrates for propene hydrogenation[J]. J Catal, 2002,208(1):187-196. doi: 10.1006/jcat.2002.3564

    14. [14]

      STINNER C, PRINS R, WEBER T. Formation, structure, and HDN activity of unsupported molybdenum phosphide[J]. J Catal, 2000,191(2):438-444. doi: 10.1006/jcat.1999.2808

    15. [15]

      ITO Y, KAWAMOTO H, SAKA S. Efficient and selective hydrogenation of aqueous acetic acid on Ru-Sn/TiO2 for bioethanol production from lignocellulosics[J]. Fuel, 2016,178(1):118-123.  

    16. [16]

      CLARK P A, OYAMA S T. Alumina-supported molybdenum phosphide hydroprocessing catalysts[J]. J Catal, 2003,218(1):78-87. doi: 10.1016/S0021-9517(03)00086-1

    17. [17]

      CHENG R H, SHU Y Y, LI L, SUN J, WANG X D, ZHANG T. CO adsorption on highly dispersed MoP/Al2O3 prepared with citric acid[J]. Thermochim Acta, 2006,450(1):42-46.  

    18. [18]

      OMYESTYA'K G, HARNOS S, BADARI C A, KLE'BERT S, ASZONYI A, VALYON J. Hydroconversion of acetic acid over indiumand phosphorus modified nickel/laponite catalysts[J]. React Kinet Mech Catal, 2015,115(1):201-216. doi: 10.1007/s11144-014-0825-9

    19. [19]

      ZHOU Gui-lin, WANG Pu-guang, JIANG Zong-xuan, YING Pin-liang, LI Can. Selective hydrogenation of acetylene over a MoP catalyst[J]. Chin J Catal, 2011,32(1):27-30.  

    20. [20]

      GONG Shu-wen, ZHANG Da, XING Sheng-kai, LIU Li-jun, LI Kao-zhen, CUI Qing-xin. Influence of the synthesis on HDS activity of molybdenum phosphide catalysts[J]. J Fuel Chem Technol, 2009,37(4):464-467.  

    21. [21]

      MONTESINOS-CACELLANOS A, ZEPEDA T A, PAWELEC B, FIERRO L J, REYES J A. Preparation, characterization cerformance of alumina supported nanostructured Mo-phosphide systems[J]. Chem Mater, 2007,19(1):5627-5636.  

    22. [22]

      GUO Q H, REN L L. Hydrodechlorination of trichloroethylene over MoP/-Al2O3 catalystwith high surface area[J]. Catal Today, 2016,264(1):158-162.

    23. [23]

      YAO Z W, TONG J, QIAO X, JIANG J, ZHAO Y, LIU D M, ZHANG Y C, WANG H Y. Novel synthesis of dispersed molybdenum and nickel phosphides from thermal carbonization of metal and phosphorus-containing resins[J]. Dalton Trans, 2015,44(2):19383-19391.  

    24. [24]

      PHILLIPS D C, SAWHILL S J, SELF R. Synthesis, characterization and hydrodesulfurization properties of silica-supported molybdenum phosphide catalysts[J]. J Catal, 2002,207(1):266-273.  

  • 加载中
    1. [1]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    2. [2]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    3. [3]

      Siwei Lv Tantian Tan Xinyue Li Siyan Zhang Mingyuan Zhang Minghao Li Hangshuo Guo Zhaorong Li Liangjie Dong Fengshuo Zhang Junlong Zhao . Competition of the “King of Transboundary Medicine”. University Chemistry, 2024, 39(9): 102-108. doi: 10.12461/PKU.DXHX202403034

    4. [4]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    5. [5]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    6. [6]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    9. [9]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    10. [10]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    11. [11]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    12. [12]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    13. [13]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    14. [14]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    15. [15]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    16. [16]

      Fengxiao Wang Zhiwei Miao Yaofeng Yuan . 有机磷化学与化学教学. University Chemistry, 2025, 40(8): 158-168. doi: 10.12461/PKU.DXHX202410077

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    18. [18]

      Shuai Yuan Yaofeng Yuan . Academician Chengye Yuan and Organic Phosphorus Chemistry. University Chemistry, 2025, 40(7): 393-400. doi: 10.12461/PKU.DXHX202409123

    19. [19]

      Yang Li Jiachen Li Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016

    20. [20]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

Metrics
  • PDF Downloads(2)
  • Abstract views(828)
  • HTML views(126)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return