Citation: ZHAO Li-ye, WANG Liang, LI Chun-hu. Synthesis and characterization of a novel BiOBr/HPW/Au for the enhanced photocatalytic activity[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(10): 1263-1269. shu

Synthesis and characterization of a novel BiOBr/HPW/Au for the enhanced photocatalytic activity

  • Corresponding author: WANG Liang, wangliang_good@163.com
  • Received Date: 11 August 2020
    Revised Date: 4 October 2020

    Fund Project: State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering 2018-K21The project was supported by State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (2018-K21)

Figures(8)

  • In this study, a novel BiOBr/HPW/Au photocatalyst was prepared via hydrothermal method followed by photo-reduction method. The characterization results indicated the successful introduction of HPW and Au in BiOBr. BiOBr/HPW/Au exhibited excellent photocatalytic activity in RhB degradation. The degradation rate constant of BiOBr/HPW/Au was 3.55 times higher than that of BiOBr. Radical scavenger experiments showed that ·O2- was the dominant reactive radical species. A possible mechanism of the enhanced photocatalytic activity was attributed to the synergistic effect of BiOBr, HPW and Au, which resulted in enhanced quantum efficiency and high light harvesting efficiency.
  • 加载中
    1. [1]

      MENG X, LI Z, CHEN J, XIE H, ZHANG Z. Enhanced visible light-induced photocatalytic activity of surface-modified BiOBr with Pd nanoparticles[J]. Appl Surf Sci, 2018,433:76-87. doi: 10.1016/j.apsusc.2017.09.103

    2. [2]

      AO Y, WANG K, WANG P, WANG C, HOU J. Synthesis of novel 2D-2D p-n heterojunction BiOBr/La2Ti2O7 composite photocatalyst with enhanced photocatalytic performance under both UV and visible light irradiation[J]. Appl Catal B:Environ, 2016,194:157-168. doi: 10.1016/j.apcatb.2016.04.050

    3. [3]

      GUO Q, FU L, YAN T, TIAN W, MA D, LI J, JIANG Y, WANG X. Improved photocatalytic activity of porous ZnO nanosheets by thermal deposition graphene-like g-C3N4 for CO2 reduction with H2O vapor[J]. Appl Surf Sci, 2020,509144773. doi: 10.1016/j.apsusc.2019.144773

    4. [4]

      NGUYEN C H, TRAN M L, TRAN T T V, JUANG R. Enhanced removal of various dyes from aqueous solutions by UV and simulated solar photocatalysis over TiO2/ZnO/rGO composites[J]. Sep Purif Technol, 2020,232115962. doi: 10.1016/j.seppur.2019.115962

    5. [5]

      YE L, JIN X, LIU C, DING C, XIE H, CHU K, WONG P. Thickness-ultrathin and bismuth-rich strategies for BiOBr to enhance photoreduction of CO2 into solar fuels[J]. Appl Catal B:Environ, 2016,187:281-290. doi: 10.1016/j.apcatb.2016.01.044

    6. [6]

      XU Z, ZHENG R, CHEN Y, ZHU J, BIAN Z. Ordered mesoporous Fe/TiO2 with light enhanced photo-Fenton activity[J]. Chin J Catal, 2019,40:631-637.  

    7. [7]

      WANG Y, LI J, WANG Q. The performance of daylight photocatalytic activity towards degradation of MB by the flower-like and approximate flower-like complexes of graphene with ZnO and Cerium doped ZnO[J]. Optik, 2020,204164131. doi: 10.1016/j.ijleo.2019.164131

    8. [8]

      QIU B, LI C, SHEN X, WANG W, REN H, LI Y, TANG J. Revealing the size effect of metallic CoS2 on CdS nanorods for photocatalytic hydrogen evolution based on Schottky junction[J]. Appl Catal A:Gen, 2020,592117377. doi: 10.1016/j.apcata.2019.117377

    9. [9]

      XU C, ZHANG W. Facile synthesis of nitrogen deficient g-C3N4 by copolymerization of urea and formamide for efficient photocatalytic hydrogen evolution[J]. Mol Catal, 2018,453:85-92. doi: 10.1016/j.mcat.2018.04.029

    10. [10]

      GUAN Y, WU J, LIU Q, GU M, LIN Y, QI Y, JIA T, PAN W, HE P, LI Q. Fabrication of BiOI/MoS2 heterojunction photocatalyst with different treatment methods for enhancing photocatalytic performance under visible-light[J]. Mater Res Bull, 2019,120:110579-110589. doi: 10.1016/j.materresbull.2019.110579

    11. [11]

      ALLAGUI L, CHOUCHENE B, GRIES T, MEDJAHDI G, GIROT E, FRAMBOISIER X, AMARA A, BALAN L, SCHNEIDER R. Core/shell rGO/BiOBr particles with visible photocatalytic activity towards water pollutants[J]. Appl Surf Sci, 2019,490:580-591. doi: 10.1016/j.apsusc.2019.06.091

    12. [12]

      SHI Z, ZHANG Y, SHEN X, DUOERKUN G, ZHU B, ZHANG L, LI M, CHEN Z. Fabrication of g-C3N4/BiOBr heterojunctions on carbon fibers as weaveable photocatalyst for degrading tetracycline hydrochloride under visible light[J]. Chem Eng J, 2020,386124010. doi: 10.1016/j.cej.2020.124010

    13. [13]

      MENG P, HENG H, SUN Y, HUANG J, YANG J, LIU X. Positive effects of phosphotungstic acid on the in-situ solid-state polymerization and visible light photocatalytic activity of polyimide-based photocatalyst[J]. Appl Catal B:Environ, 2018,226:487-498. doi: 10.1016/j.apcatb.2018.01.004

    14. [14]

      XU L, ZANG H, ZHANG Q, CHEN Y, WEI Y, YAN J, ZHAO Y. Photocatalytic degradation of atrazine by H3PW12O40/Ag-TiO2:Kinetics, mechanism and degradation pathways[J]. Chem Eng J, 2013,232:174-182. doi: 10.1016/j.cej.2013.07.095

    15. [15]

      GUO J, YAN D, LAM F, DEKA B, LV X, NG Y, AN A. Self-cleaning BiOBr/Ag photocatalytic membrane for membrane regeneration under visible light in membrane distillation[J]. Chem Eng J, 2019,378122173. doi: 10.1016/j.cej.2019.122173

    16. [16]

      BAI Y, CHEN T, WANG P, WANG L, YE L, SHI X, BAI W. Size-dependent role of gold in g-C3N4/BiOBr/Au system for photocatalytic CO2 reduction and dye degradation[J]. Sol Energy Mater Sol Cells, 2016,157:406-414. doi: 10.1016/j.solmat.2016.07.001

    17. [17]

      GUAN Z, LI Q, SHEN B, BAO S, ZHANG J, TIAN B. Fabrication of Co3O4 and Au co-modified BiOBr flower-like microspheres with high photocatalytic efficiency for sulfadiazine degradation[J]. Sep Purif Technol, 2020,234116100. doi: 10.1016/j.seppur.2019.116100

    18. [18]

      XIONG X, DING L, WANG Q, LI Y, JIANG Q, HU J. Synthesis and photocatalytic activity of BiOBr nanosheets with tunable exposed {010} facets[J]. Appl Catal B:Environ, 2016,188:283-291. doi: 10.1016/j.apcatb.2016.02.018

    19. [19]

      DI J, XIA J, JI M, WANG B, YIN S, ZHANG Q, CHEN Z, LI H. Advanced photocatalytic performance of graphene-like BN modified BiOBr flower-like materials for the removal of pollutants and mechanism insight[J]. Appl Catal B:Environ, 2016,183:254-262. doi: 10.1016/j.apcatb.2015.10.036

    20. [20]

      LI H, HU T, LIU J, SONG S, DU N, ZHANG R, HOU W. Thickness-dependent photocatalytic activity of bismuth oxybromide nanosheets with highly exposed (010) facets[J]. Appl Catal B:Environ, 2016,182:431-438. doi: 10.1016/j.apcatb.2015.09.050

    21. [21]

      LI Q, LU M, WANG W, ZHAO W, CHEN G, SHI H. Fabrication of 2D/2D g-C3N4/Au/Bi2WO6 Z-scheme photocatalyst with enhanced visible-light-driven photocatalytic activity[J]. Appl Surf Sci, 2020,508144182. doi: 10.1016/j.apsusc.2019.144182

    22. [22]

      GAO Z, YAO B, XUE T, MA M. Effect and study of reducing agent NaBH4 on Bi/BiOBr/CdS photocatalyst[J]. Mater Lett, 2020,259126874. doi: 10.1016/j.matlet.2019.126874

    23. [23]

      SUN Y, MENG P, LIU X. Self-assembly of tungstophosphoric acid/acidified carbon nitride hybrids with enhanced visible-light-driven photocatalytic activity for the degradation of imidacloprid and acetamiprid[J]. Appl Surf Sci, 2018,456:259-269. doi: 10.1016/j.apsusc.2018.06.104

    24. [24]

      AYATI A, TANHAEI B, BAMOHARRM F, AHMADPOUR A, MAYDANNIK P, SILLANPAA M. Photocatalytic degradation of nitrobenzene by gold nanoparticles decorated polyoxometalate immobilized TiO2 nanotubes[J]. Sep Purif Technol, 2016,171:62-68. doi: 10.1016/j.seppur.2016.07.015

    25. [25]

      WANG L, ZHANG H G, GUO C, FENG L J, LI C H, WANG W T. Facile constructing plasmonic Z-scheme Au NPs/g-C3N4/BiOBr for enhanced visible light photocatalytic activity[J]. J Fuel Chem Technol, 2019,47(7):834-842. doi: 10.1016/S1872-5813(19)30036-2

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    3. [3]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    4. [4]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    5. [5]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    6. [6]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    7. [7]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    8. [8]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    9. [9]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    10. [10]

      Kun WangJiaxuan QiuZefei WuYang LiuYongqi LiuXiangpeng ChenBao ZangJianmei ChenYunchao LeiLonglu WangQiang Zhao . Wafer-level GaN-based nanowires photocatalyst for water splitting. Chinese Chemical Letters, 2025, 36(3): 109993-. doi: 10.1016/j.cclet.2024.109993

    11. [11]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    12. [12]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    13. [13]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    14. [14]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    15. [15]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    16. [16]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    17. [17]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    18. [18]

      Chang LIUChao ZHANGTongbu LU . Small-size Au nanoparticles anchored on pyrenyl-graphdiyne for N2 electroreduction. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 174-182. doi: 10.11862/CJIC.20240305

    19. [19]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    20. [20]

      Yaxuan Jin Chao Zhang Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414

Metrics
  • PDF Downloads(5)
  • Abstract views(793)
  • HTML views(157)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return