Citation: KANG Mei-rong, SONG He-yuan, JIN Fu-xiang, CHEN Jing. Synthesis and physicochemical characterization of polyoxymethylene dimethyl ethers[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(7): 837-845. shu

Synthesis and physicochemical characterization of polyoxymethylene dimethyl ethers

  • Corresponding author: CHEN Jing, chenj@licp.cas.cn.
  • Received Date: 30 March 2017
    Revised Date: 12 May 2017

    Fund Project: the National Natural Science Foundation of China 21473225

Figures(6)

  • Polyoxymethylene dimethyl ethers (H3CO(CH2O)nCH3, PODEn or DMMn, n ≥ 2) with unique physical and chemical properties are a potential additive for diesel fuels, which can effectively enhance the combustion efficiency and reduce the emission of pollutants. In this work, a series of pure PODEn components (n=2-5) were synthesized from methylal and trioxymethylene and obtained with high purity through collaborative separation; their structure and properties were characterized by NMR, FT-IR, Raman, and DFT calculation and a detailed assignment of the expressions in the spectrogram to the various groups was performed. The density and viscosity of PODEn were measured at 298.15-323.15 K. The results indicate that the density and viscosity of PODEn decrease gradually with the increase of temperature. Meanwhile, with the increase in the number of -CH2O-units (n) from 2 to 5, the density, viscosity, flash point, pour point, and the heat of fusion and solidification of PODEn are all increased. These results are valuable for the practical synthesis and application of PODEn.
  • 加载中
    1. [1]

      UCHIDA T, KURITA Y, KUBO M. The dipole moments and the strucures of polyoxymethylene dimethyl ethers[J]. J Polym Sci, 1956,19(92):365-372. doi: 10.1002/pol.1956.120199215

    2. [2]

      ARVIDSON M, FAKLEY M E, SPENCER M S. Lithium Halide-Assisted formation of polyoxymethylene dimethyl ethers from dimethoxymethane and formaldehyde[J]. J Mol Catal, 1987,41(3):391-393. doi: 10.1016/0304-5102(87)80118-9

    3. [3]

      VIGIER F, COUTANCEAU C, LÉGERJ M, DUBOIS J L. Polyoxymethylene dimethyl ether (CH3O(CH2O)nCH3) oxidation on Pt and Pt/Ru supported catalysts[J]. J Power Sources, 2008,175(1):82-90. doi: 10.1016/j.jpowsour.2007.09.053

    4. [4]

      MASAHIRO W, HIROYUKI U, STEVE B, JEAN-LUC D. Fuel cells using an oxy-carbon fuel soluble in aqueous meduim: EP, 1993159A1[P]. 2008-11-19.

    5. [5]

      BURGER J, SIEGERT M, STRÖFER E, HASSE H. Poly(oxymethylene) dimethyl ethers as components of tailored diesel fuel:Properties, synthesis and purification concepts[J]. Fuel, 2010,89(11):3315-3319. doi: 10.1016/j.fuel.2010.05.014

    6. [6]

      ZHAO Q, WANG H, QIN ZHF, WU ZH W, WU J B, FAN W B, WANG J G. Synthesis of polyoxymethylene dimethyl ethers from methanol and trioxymethylene with molecular sieves as catalysts[J]. J Fuel Chem Technol, 2011,39(12):918-923.  

    7. [7]

      WU J B, WU Z W, WANG R Y, SHI R P, QIN Z F, ZHU H Q, DONG M, FAN W B, WANG J G. Recent research progresses in the catalytic synthesis of methyl formate, dimethoxymethane and polyoxymethylene dimethyl ethers from methano[J]. J Fuel Chem Technol, 2015,43(7):816-828.  

    8. [8]

      GAO X C, YANG W M, LIU Z C, GAO H X. Catalytic performance of HZSM-5 molecular sieve for synthesis of polyoxymethylene dimethyl ethers[J]. Chin J Catal, 2012,33(8):1389-1394.  

    9. [9]

      LI H J, SONG H L, ZHAO F, CHEN L W, XIA CH G. Chemical equilibrium controlled synthesis of polyoxymethylene dimethyl ethers over sulfated titania[J]. J Energy Chem, 2015,24(2):239-244. doi: 10.1016/S2095-4956(15)60307-2

    10. [10]

      REN Y, HUANG Z H, MIAO H Y, DI Y G, JIANG D M, ZENG K, LIU B, WANG X B. Combustion and emissions of a DI diesel engine fuelled with diesel-oxygenate blends[J]. Fuel, 2008,87(12):2691-2697. doi: 10.1016/j.fuel.2008.02.017

    11. [11]

      ZHAO Y P, XU Z, CHEN H, FU Y C, SHEN J Y. Mechanism of chain propagation for the synthesis of polyoxymethylene dimethyl ethers[J]. J Energy Chem, 2013,22(6):833-836. doi: 10.1016/S2095-4956(14)60261-8

    12. [12]

      BURGER J, STRÖFER E, HASSE H. Chemical equilibrium and reaction kinetics of the heterogeneously catalyzed formation of poly(oxymethylene) dimethyl ethers from methylal and trioxane[J]. Ind Eng Chem Res, 2012,51(39):12751-12761. doi: 10.1021/ie301490q

    13. [13]

      CHEN J, SONG H Y, XIA C G, KANG M R, JIN R H. System and method for continuously producing polyoxymethylene dialkyl ethers: AU, 2012268915[P]. 2014-05-15.

    14. [14]

      CHEN J, SONG H Y, XIA C G, LI Z. Method for synthesizing polyoxymethylene dimethyl ethers catalyzed by an ionic liquid: US, 0288343[P]. 2011-11-24.

    15. [15]

      SCOTT A P, RADOM L. Harmonic vibrational frequencies:An evaluation of Hartree-Fock, Moller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors[J]. J Phys Chem, 1996,100(41):16502-16513. doi: 10.1021/jp960976r

    16. [16]

      PARLAK C. Theoretical and experimental vibrational spectroscopic study of 4-(1-pyrrolidinuyl) piperidine[J]. J Mol Struct, 2010,966(1):1-7.  

    17. [17]

      DIKMEN G, ALVER Ö. NMR, FT-IR, Raman and UV-Vis spectroscopic investigation and DFT study of 6-bromo-3-pyridinyl boronic acid[J]. J Mol Struct, 2015,1099:625-632. doi: 10.1016/j.molstruc.2015.05.063

    18. [18]

      ANDERSSON M P, UVDAL P. New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-ξ basis set 6-311+G(d, p)[J]. J Phys Chem A, 2005,109(12):2937-2941. doi: 10.1021/jp045733a

    19. [19]

      SONG D Y, CHEN J. Densities and viscosities for ionic liquids mixtures containing[eOHmin][BF4], [bmim][BF4] and[bpy][J]. J Chem Thermodyn, 2014,77:137-143. doi: 10.1016/j.jct.2014.05.016

    20. [20]

      MEHRDAD A, NIKNAM Z. Investigation on the interactions of poly(ethylene oxide) and ionic liquid 1-butyl-3-methyl-imidazolium bromide by viscosity and spectroscopy[J]. J Chem Eng Data, 2016,61(5):1700-1709. doi: 10.1021/acs.jced.5b00428

    21. [21]

      LINTON W H, GOODMAN H H. Physical properties of high molecular weight acetal resins[J]. J Appl Polym Sci, 1959,1(2):179-184. doi: 10.1002/app.1959.070010208

    22. [22]

      GUNBAS G, HAFEZI N, SHEPPARD W L, OLMSTEAD M M, STOYANOVA I V, THAM F S, MEYER M P, MASCAL M. Extreme oxatriquinanes and a record C-O bond length[J]. Nat Chem, 2012,4(12):1018-1023. doi: 10.1038/nchem.1502

    23. [23]

      ALLINGER N L, LⅡ J H, SCHAEFER H F. Molecular mechanics (MM4) studies on unusually long carbon-carbon bond distances in hydrocarbons[J]. J Chem Theory Comput, 2016,12(6):2774-2778. doi: 10.1021/acs.jctc.5b00926

    24. [24]

      SHAIKH M S, SHARIFF A M, BUSTAM M A, MURSHID G. Physicochemical properties of aqueous solutions of sodium glycinate in the non-precipitation regime from 298.15 to 343.15K[J]. Chin J Chem Eng, 2015,23(3):536-540. doi: 10.1016/j.cjche.2013.11.001

    25. [25]

      MAZINANI S, SAMSAMI A, JAHANMIRI A. Solubiity (at low partial pressures), density, viscosity, and corrosion rate of carbon dioxide in blend solutions of monoethanolamine (MEA) and sodium glycinate (SG)[J]. J Chem Eng Data, 2011,56(7):3163-3168. doi: 10.1021/je2002418

    26. [26]

      KUMARI A, SANDEEPA K, KUMAR T P, SATYAVATHI B. Solubility, thermodynamic properties, and derived excess properties of benzoic acid in (acetic acid + water) and (acetic acid + toluene) binary mixtures[J]. J Chem Eng Data, 2016,61(1):67-77. doi: 10.1021/acs.jced.5b00197

    27. [27]

      PHOON L Y, HASHIM H, MAT R, MUSTAFFA A A. Flash point prediction of tailor-made green diesel blends containing B5 palm oil biodiesel and alcohol[J]. Fuel, 2016,175:287-293. doi: 10.1016/j.fuel.2016.02.027

    28. [28]

      PRUGH R W. The relationship between flash point and LFL with application to hybrid mixtures[J]. Process Saf Prog, 2008,27(2):156-163. doi: 10.1002/(ISSN)1547-5913

    29. [29]

      PRAK D J L, COWART J S, TRULOVE P C. Density and viscosity from 293.15 to 373.15K, speed of sound and bulk modulus from 293.15 to 343.15 K, surface tension, and flash point of binary mixtures of bicyclohexyl and 1, 2, 3, 4-tetrahydronaphthalene or trans-decahydronaphthalene at 0.1MPa[J]. J Chem Eng Data, 2016,61(1):650-661. doi: 10.1021/acs.jced.5b00790

    30. [30]

      FLETCHER P D I, ROBERTS N A, URQUHART C. Solubility behavior, crystallization kinetics and pour point:A comparison of linear alkane and triacyl glyceride solute/solvent mixtures[J]. J Ind Eng Chem, 2016,34:382-389. doi: 10.1016/j.jiec.2015.12.012

    31. [31]

      GB 19147-2013, Automobile diesel fuels (V)[S].

    32. [32]

      BRANDENBURG A, WAPPLER E, KITA J, MOOS R. Miniaturized ceramic DSC device with strain gauge-based mass detection-first steps to realize a fully integrated DSC/TGA device[J]. Sens Actuators A, 2016,241:145-151. doi: 10.1016/j.sna.2016.02.011

    33. [33]

      JIN X, XU X D, ZHANG X S, YIN Y G. Determination of the PCM melting temperature rang using DSC[J]. Thermochim Acta, 2014,595:17-21. doi: 10.1016/j.tca.2014.09.004

  • 加载中
    1. [1]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenQiang SunShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoLi Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100

    4. [4]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    5. [5]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    6. [6]

      Teng-Yu HuangJunliang SunDe-Xian WangQi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758

    7. [7]

      Jianmin JiaoJiehao YuXueqi TianXiao-Yu Hu . TPE-embedded functional macrocycles: From structural design to photophysical property and application. Chinese Chemical Letters, 2025, 36(6): 111026-. doi: 10.1016/j.cclet.2025.111026

    8. [8]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    9. [9]

      Yulin MaoJingyu MaJiecheng JiYuliang WangWanhua WuCheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927

    10. [10]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    11. [11]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    12. [12]

      Hang Wang Qi Wang Chuan-De Wu . Continuous synthesis of ammonia. Chinese Journal of Structural Chemistry, 2025, 44(3): 100437-100437. doi: 10.1016/j.cjsc.2024.100437

    13. [13]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    14. [14]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    15. [15]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

    16. [16]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    17. [17]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    18. [18]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    19. [19]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    20. [20]

      Xiaoyu ChenJiahao HuJingyi LinHaiyang HuangChangqing YeHongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923

Metrics
  • PDF Downloads(5)
  • Abstract views(1507)
  • HTML views(84)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return