Citation: SUN Meng-chao, YUAN Xin-hua, LUO Ze-jun, ZHU Xi-feng. Influence of heating temperatures on the component distribution of distillates derived from walnut shell bio-oil[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(10): 1179-1185. shu

Influence of heating temperatures on the component distribution of distillates derived from walnut shell bio-oil

  • Corresponding author: ZHU Xi-feng, xfzhu@ustc.edu.cn
  • Received Date: 13 August 2020
    Revised Date: 16 September 2020

    Fund Project: the National Key Research and Development Program of China 2018YFB1501404The project was supported by the National Key Research and Development Program of China (2018YFB1501404)

Figures(6)

  • Influence of heating temperatures on the component distribution of distillates distilled from walnut shell bio-oils was studied. Meanwhile, distillates were further separated into water-soluble and water-insoluble fraction to characterize product distribution. The results showed that distillate fraction yield increased with strengthening heating temperature from 120 to 300 ℃. Aromatic hydrocarbons (e.g. naphthalene) and carboxylic acids (e.g. acetic acid) significantly concentrated in water-insoluble fraction as heating temperatures were below 240 ℃. Notably, the relative concentration of aromatic and carboxylic compounds in the water-insoluble fraction derived from 300 ℃ was 13.86 and 3.15 times higher than that of crude bio-oil, respectively. Large amounts of phenols such as phenol and guaiacol was distilled as heating temperatures exceeded 240 ℃, which induced enhanced yield of water-insoluble fraction. Moreover, the moisture of all the water-soluble fractions was higher than 60%, which demonstrated the water-soluble fraction remarkably concentrated moisture. In addition, undetected components (e.g. butyl 2-ethylacetate and cyclopentanone) in crude bio-oil surprisingly existed in distillates and the total moisture of distillates was higher than that of crude bio-oils, which proved esterification and polycondensation reactions occurred in bio-oil distillation process. Furthermore, the component distribution of distillates also indicated modifying heating temperatures effectively enriched commodity chemicals. Note that water-insoluble fraction distilled from 300 ℃ exhibited relative concentration of phenol, guaiacol, 4-methyl-2-methoxyphenol, 4-ethyl-2-methoxyphenol and 4-propyl-2-methoxyphenol was 109%, 160%, 84%, 53% and 444% higher than that in crude bio-oil, respectively.
  • 加载中
    1. [1]

      KAN T, STREZOV V, EVANS T J. Lignocellulosic biomass pyrolysis:A review of product properties and effects of pyrolysis parameters[J]. Renewable Sustainable Energy Rev, 2016,57:1126-1140. doi: 10.1016/j.rser.2015.12.185

    2. [2]

      CHEN D, ZHOU J, ZHANG Q, ZHU X. Evaluation methods and research progresses in bio-oil storage stability[J]. Renewable Sustainable Energy Rev, 2014,40:69-79. doi: 10.1016/j.rser.2014.07.159

    3. [3]

      BULUSHEV D A, ROSS J R H. Catalysis for conversion of biomass to fuels via pyrolysis and gasification:A review[J]. Catal Today, 2011,171(1):1-13.  

    4. [4]

      ZHANG Wei, ZHAO Zeng-li, ZHENG An-qing, CHANG Sheng, LI Hai-bin. Characterization and storage stability analysis of bio-oil[J]. J Fuel Chem Technol, 2012,40(2):184-189.  

    5. [5]

      DUAN H, DONG J, GU X, PENG Y, CHEN W, TITIPONG I, WILLIAM K M, LI M, YI N, ALEXANDER F, WANG Y, ZHENG X, JI S, WANG Q, FENG J, CHEN D, LI Y, JEAN C, LIU H, SHIK C, DERMOT O. Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd-Mo catalyst[J]. Nat Commun, 2017,8(1)591.  

    6. [6]

      DE S, SAHA B, LUQUE R. Hydrodeoxygenation processes:Advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels[J]. Bioresource Technol, 2015,178:108-118. doi: 10.1016/j.biortech.2014.09.065

    7. [7]

      NARNO S, ROCHMADI R, MULYONO P, AZIZ M, BUDIMAN A. Kinetic study of catalytic cracking of bio-oil over silica-alumina catalyst[J]. Bioresources, 2018,13(1):1917-1929.  

    8. [8]

      GAMLIEL , DAVID P, JULIA A V, GEORGE M B. The effect of ZSM-5 catalyst support in catalytic pyrolysis of biomass and compounds abundant in pyrolysis bio-oils[J]. J Anal Appl Pyrolysis, 2016,122:7-12. doi: 10.1016/j.jaap.2016.11.002

    9. [9]

      FEI Wen-ting, LIU Rong-hou, ZHOU Wei-qi, YI Ren-zhan. Bio-oil catalytic esterification and its stability with storage[J]. Acta Energi Sin, 2014,35(11):2177-2184.  

    10. [10]

      BAKER E G, ELLIOTT D C. Catalytic hydrotreating of biomass-derived oils[J]. Acs Symp Ser, 1987,322.  

    11. [11]

      REZAEI P S, SHAFAGHAT H, DAUD W M A W. Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis:A review[J]. Appl Catal A:Gen, 2014,469:490-511. doi: 10.1016/j.apcata.2013.09.036

    12. [12]

      LV Dong-can, LIU Yun-quan, WANG Duo, YUAN Liang. Research progress in separation of bio-oils by extraction methods[J]. Chem Ind Eng Prog, 2012,31(7):1425-1431.  

    13. [13]

      BENNETT N M, HELLE S S, DUFF S J B. Extraction and hydrolysis of levoglucosan from pyrolysis oil[J]. Bioresource Technol, 2009,100(23):6059-6063. doi: 10.1016/j.biortech.2009.06.067

    14. [14]

      SHASHKOV M V, SIDELNIKOV V N. Separation of phenol-containing pyrolysis products using comprehensive two-dimensional chromatography with columns based on pyridinium ionic liquids[J]. J Sep Sci, 2016,39(19):3754-3760. doi: 10.1002/jssc.201600431

    15. [15]

      LI S, ZHU X, LI S, ZHU X. Improved bio-oil distilling effect by adding additives to enhance downstream bio-oil processing and separation[J]. Sep Purif Technol, 2020116982.  

    16. [16]

      WANG Yu-Rong, WANG Shu-rong, WANG Xiang-yu, GUO Zuo-gang. Molecular distillation separation characteristic of bio-oil under different pressures[J]. J Fuel Chem Technol, 2013,41(2):177-182.  

    17. [17]

      CHENG B, HUANG B, ZHANG R, CHEN Y, JIANG S, LU Y, ZHANG X, JIANG H, YU H. Bio-coal:A renewable and massively producible fuel from lignocellulosic biomass[J]. Sci Adv, 2020,6(1)eaay0748. doi: 10.1126/sciadv.aay0748

    18. [18]

      ZHU X, WANG C, LI S, ZHU X. Upgrading biochar from bio-oil distillation residue by adding bituminous coal:Effects of induction conditions on physicochemical properties[J]. Energy Convers Manage, 2018,174:288-294. doi: 10.1016/j.enconman.2018.08.055

    19. [19]

      LI Shan-shan, PAN Yang, ZHANG Li-qiang, HUANG Ling-rui, ZHU Xi-feng. Catalytic effect of zinc acetate on products distribution and reaction process of biomass pyrolysis[J]. Chin Sci Bull, 2019(31).  

    20. [20]

      H E, G , RUAN X, SONG Y, LIU Z, HE G. Molecular dynamics simulation of the hydration structure and hydrogen bonding behavior of phenol in aqueous solution[J]. J Mol Liq, 2016,221:942-948. doi: 10.1016/j.molliq.2016.06.048

    21. [21]

      ALSBOU E, HELLEUR B. Accelerated Aging of Bio-oil from Fast Pyrolysis of Hardwood[J]. Energy Fuels, 2014,28(5):3224-3235. doi: 10.1021/ef500399n

    22. [22]

      LUO Z, XIE F, CHU W, WANG Y, ZHU X. Comparative study on the evolution of physicochemical properties of tar obtained from heavy fraction of bio-oil at different heating rates[J]. J Anal Appl Pyrolysis, 2020,150104854. doi: 10.1016/j.jaap.2020.104854

    23. [23]

      ZHANG X S, YANG G X, JIANG H, LIU W, DING H. Mass production of chemicals from biomass-derived oil by directly atmospheric distillation coupled with co-pyrolysis[J]. Sentific Reports, 2013,31120. doi: 10.1038/srep01120

  • 加载中
    1. [1]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    2. [2]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    3. [3]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    4. [4]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    5. [5]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    6. [6]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    7. [7]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    8. [8]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    9. [9]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    10. [10]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    11. [11]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    12. [12]

      Shui Hu Houjin Li Zhenming Zang Lianyun Li Rong Lai . Integration of Science and Education Promotes the Construction of Undergraduate-to-Master’s Integration Experimental Courses: A Case Study on the Extraction, Separation and Identification of Artemisinin from Artemisia annua. University Chemistry, 2024, 39(4): 314-321. doi: 10.3866/PKU.DXHX202310063

    13. [13]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    14. [14]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    15. [15]

      Qiang Wu Wenhua Hou . Teaching Classical Contents Newly: Taking Temperature–Entropy Diagram as an Example. University Chemistry, 2025, 40(4): 399-407. doi: 10.12461/PKU.DXHX202407102

    16. [16]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    17. [17]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    18. [18]

      Houjin Li Shuanglian Cai Yuan Zheng Zhanxiang Liu Chengshan Yuan Lin Wu Guangao Yu Jie Han Qingwen Liu Xin Du Ying Xiong Qihan Zhang Xingwen Sun Jianrong Zhang Shuyong Zhang . Basic Operations and Standardization Suggestions for Organic Chemistry Distillation Experiments. University Chemistry, 2025, 40(5): 40-54. doi: 10.12461/PKU.DXHX202411053

    19. [19]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    20. [20]

      Tiantian Dai Xi Yang . Teaching Design and Reflection on the “Osmotic Pressure of Solutions” in Medical Chemistry. University Chemistry, 2025, 40(5): 268-275. doi: 10.12461/PKU.DXHX202411032

Metrics
  • PDF Downloads(2)
  • Abstract views(1248)
  • HTML views(297)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return