Citation: LIANG Ke-ming, JIANG Bin, HUANG Yan, LU Meng-meng, WANG Qiu-jing. Controllable synthesis of carbon nanofibers with plated FeCoNiB as high performance composite catalysts for electrocatalytic hydrogen evolution[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(10): 1270-1280. shu

Controllable synthesis of carbon nanofibers with plated FeCoNiB as high performance composite catalysts for electrocatalytic hydrogen evolution

  • Corresponding author: JIANG Bin, jb1987@nwu.edu.cn
  • Received Date: 29 July 2020
    Revised Date: 7 September 2020

    Fund Project: The project was supported by the National Natural Science Foundation of China (21902127)The National Natural Science Foundation of China 21902127

Figures(8)

  • Carbon nanofibers (CNFs) were synthesized by ethanol catalytic combustion method and FeCoNiB was loaded on the CNFs by electroless plating (chemical deposition) method. The effect of electroless plating condition on the particle size, dispersion, composition and structure of FeCoNiB was then investigated, to establish the process for the controllable synthesis of carbon nanofibers with plated FeCoNiB (FeCoNiB/CNFs). In addition, the electrocatalytic performance of FeCoNiB/CNFs was evaluated for the hydrogen evolution reaction (HER) in alkaline environment. The results illustrate that the FeCoNiB/CNFs shows a low overpotential of 366 mV at 100 mA/cm2 and a quite low Tafel slope value of 41 mV/dec, as well as a stable potential without attenuation during the stability test for 10 h, displaying a stable and high catalytic performance that is comparable to that of noble metal catalysts. This study is probably helpful for the development of efficient non-noble metal catalyst for HER as well as the application of large-scale electrolytic water hydrogen production in industry.
  • 加载中
    1. [1]

      LIANG Xin-yuan, SHI You-xuan, ZHAO Yue-jun. Research progress of electrocatalytic hydrogen evolution reaction and hydrogen evolution catalyst[J]. Chem Ent Manage, 2019(7):68-69.  

    2. [2]

      ZHAO Yong-zhi, MENG Bo, CHEN Lin-xin, WANG Geng, ZHENG Jin-yang, GU Chao-hua, ZHANG Xin, ZHANG Jun-feng. Analysis of utilization status of hydrogen energy[J]. Chem Ind Eng Prog, 2015,34(9):3248-3255.  

    3. [3]

      ARIHARAN A, VISWANATHAN B, NANDHAKUMAR V. Hydrogen storage on boron substituted carbon materials[J]. Int J Hydrogen Energy, 2016,41(5):3527-3536. doi: 10.1016/j.ijhydene.2015.12.169

    4. [4]

      TONG Shan-shan, WANG Xue-jing, LI Qing-chuan, HAN Xiao-jun. Research progress of hydrogen production catalysts based on carbon fiber materials[J]. Chin J Anal Chem, 2016,44(9):1447-1457.  

    5. [5]

      ZHANG J, ZHANG D, YANG Y, MA J, CUI S, LI Y, YUAN B. Facile synthesis of ZnCo2O4 mesoporous structures with enhanced electrocatalytic oxygen evolution reaction properties[J]. RSC Adv, 2016,6(95):92699-92704. doi: 10.1039/C6RA14191A

    6. [6]

      SATHE B R, ZOU X, ASEFA T. Metal-free B-doped graphene with efficient electrocatalytic activity for hydrogen evolution reaction[J]. Catal Sci Technol, 2014,4(7):2023-2030. doi: 10.1039/C4CY00075G

    7. [7]

      ZHU Q, QIU B, DU M, XING M, ZHANG J. Nickel boride cocatalyst boosting efficient photocatalytic hydrogen evolution reaction[J]. Ind Eng Chem Res, 2018,57(24):8125-8130. doi: 10.1021/acs.iecr.8b01376

    8. [8]

      GUPTA S, PATEL N, MIOTELLO A, KOTHARI D C. Cobalt-boride:an efficient and robust electrocatalyst for hydrogen evolution reaction[J]. J Power Sources, 2015,279:620-625. doi: 10.1016/j.jpowsour.2015.01.009

    9. [9]

      XU X, DENG Y, GU M, SUN B, LIANG Z, XUE Y, GUO Y, TIAN J, CUI H. Large-scale synthesis of porous nickel boride for robust hydrogen evolution reaction electrocatalyst[J]. Appl Surf Sci, 2019,470:591-595. doi: 10.1016/j.apsusc.2018.11.127

    10. [10]

      LI H, WEN P, LI Q, DUN C, XING J, ADHIKARI S, JIANG L, CARROLL D L, GEYER S M. Earth-abundant iron diboride (FeB2) nanoparticles as highly active bifunctional electrocatalysts for overall water splitting[J]. Adv Energy Mater, 2017,7(17)1700513. doi: 10.1002/aenm.201700513

    11. [11]

      HAO W, WU R, ZHANG R, HA Y, CHEN Z, WANG L, YANG Y, MA X, SUN D, FANG F, GUO Y. Electroless plating of highly efficient bifunctional boride-based electrodes toward practical overall water splitting[J]. Adv Energy Mater, 2018,8(26)1801372. doi: 10.1002/aenm.201801372

    12. [12]

      LI En-chong, YANG Da-xiang, GUO Wei-ling, ZHOU Xin-yuan, WANG Hai-dou, XU Bin-shi. Preparation of carbon nanofibers and application of their composites in military industry[J]. Mater Rep, 2011,25(S2):188-192.  

    13. [13]

      DÍAZ J A, MARTÍNEZ F M, ROMERO A, VALVERDE J L. Synthesis of carbon nanofibers supported cobalt catalysts for Fischer-Tropsch process[J]. Fuel, 2013,111:422-429. doi: 10.1016/j.fuel.2013.04.003

    14. [14]

      WANG He, WANG Hong-jie, WANG Wen-yu, JIN Xin, LIN Tong. Application of polyacrylonitrile based carbon nanofibers as electrode materials for supercapacitors[J]. Mater Rep, 2018,32(5):730-734+748.  

    15. [15]

      SHENG M, WU Q, WANG Y, LIAO F, ZHOU Q, HOU J, WENG W. Network-like porous Co-Ni-B grown on carbon cloth as efficient and stable catalytic electrodes for hydrogen evolution[J]. Electrochem Commun, 2018,93:104-108. doi: 10.1016/j.elecom.2018.06.017

    16. [16]

      NELIZE M A C, JOMAR L B F, CUONG P H, RICARDO V. Carbon nanofibers:A versatile catalytic support[J]. Mater Res Ibero Am J, 2008,11(3):353-357.  

    17. [17]

      VICENTE J, PARASKEVI P, PAULA S, JOSÉ L V, AMAYA R. Synthesis and characterization of ruthenium supported on carbon nanofibers with different graphitic plane arrangements[J]. Chem Eng J, 2011,168(2):947-954. doi: 10.1016/j.cej.2011.02.024

    18. [18]

      CHENG Jin. Preparation of quasi one dimensional carbon nanostructured materials using ethanol as carbon source[D]. Beijing: Sensing Technology Research Center of Information Engineering Institute, 2007.

    19. [19]

      ZHI W S, JAKOB K, COLIN F D, IB C, JENS K N, THOMAS F J. Combining theory and experiment in electrocatalysis:Insights into materials design[J]. Science, 2017,355(6321)eaad4998. doi: 10.1126/science.aad4998

    20. [20]

      GUPTA S, PATEL N, FERNANDES R, KADREKAR R. Co-Ni-B nanocatalyst for efficient hydrogen evolution reaction in wide pH range[J]. Appl Catal B:Gnviron, 2016,192:126-133. doi: 10.1016/j.apcatb.2016.03.032

    21. [21]

      CARLOS D R, ABEL H M, ROAL T S, MANUEL A R, JES'US G H. Measurement of mechanical properties of an electroless Ni-B coating using nanoindentation[J]. Ind Eng Chem Res, 2012,51(22):7762-7768. doi: 10.1021/ie201760g

    22. [22]

      ZHANG L, LI S, TAN H, KHAN S U, MA Y, ZANG H, WANG Y, LI Y. MoP/Mo2C@C:A new combination of electrocatalysts for highly efficient hydrogen evolution over the entire pH range[J]. ACS Appl Mater Interfaces, 2017,9(19):16270-16279. doi: 10.1021/acsami.7b03823

    23. [23]

      HOA V H, TRAN D T, LE T H, KIM H N, LEE H J. Hierarchically porous nickel-cobalt phosphide nanoneedle arrays loaded micro-carbon spheres as an advanced electrocatalyst for overall water splitting application[J]. Appl Catal B Gnviron, 2019,253:235-245. doi: 10.1016/j.apcatb.2019.04.017

    24. [24]

      HUANG W, WANG F, QIU N, WU X, ZANG C, LI A, XU L. Enteromorpha prolifera-derived Fe3C/C composite as advanced catalyst for hydroxyl radical generation and efficient removal for organic dye and antibiotic[J]. J Hazard Mater, 2019,378120728. doi: 10.1016/j.jhazmat.2019.06.005

    25. [25]

      MASA J, SINEV I, MISTRY H, VENTOSA E, MATA M, ARBIOL J, MUHLER M, CUENYA B R, SCHUHMANN W. Ultrathin high surface area nickel boride (NixB) nanosheets as highly efficient electrocatalyst for oxygen evolution[J]. Adv Energy Mater, 2017,7(17)1700381. doi: 10.1002/aenm.201700381

    26. [26]

      AN L, SUN Y, ZONG Y, LIU Q, GUO J, ZHANG X. Nickel iron boride nanosheets on rGO for active electrochemical water oxidation[J]. J Solid State Chem, 2018,265:135-139. doi: 10.1016/j.jssc.2018.05.039

    27. [27]

      FAN X, PENG Z, YE R, ZHOU H, GUO X. M3C (M:Fe, Co, Ni) nanocrystals encased in graphene nanoribbons:an active and stable bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions[J]. ACS Nano, 2015,9(7):7407-7418. doi: 10.1021/acsnano.5b02420

    28. [28]

      SUN J, ZHANG W, WANG S, REN Y, LIU Q, SUN Y, TANG L, GUO J, ZHANG X. Ni-Co-B nanosheets coupled with reduced graphene oxide towards enhanced electrochemical oxygen evolution[J]. J Alloys Compd, 2019,776:511-518. doi: 10.1016/j.jallcom.2018.10.296

    29. [29]

      ZHOU C, MU J, QI Y, WANG Q, ZHAO X, YANG E. Iron-substituted Co-Ni phosphides immobilized on Ni foam as efficient self-supported 3D hierarchical electrocatalysts for oxygen evolution reaction[J]. Int J Hydrogen Energy, 2019,44(16):8156-8165. doi: 10.1016/j.ijhydene.2019.02.053

    30. [30]

      THIRUMAL V, PANDURANGAN A, JAYAVEL R, ⅡANGOVAN R. Synthesis and characterization of boron doped graphene nanosheets for supercapacitor applications[J]. Synth Met, 2016,220:524-532. doi: 10.1016/j.synthmet.2016.07.011

    31. [31]

      SAHOO M, SREENA K. P, VINAYAN B[J]. Mater Res Bull, 2015,61:383-390. doi: 10.1016/j.materresbull.2014.10.049

    32. [32]

      HE J, WU T, CHEN S, MIAO R, SUIB S L. Structure-property relationship of graphene coupled metal (Ni, Co, Fe) (oxy)hydroxides for efficient electrochemical evolution of oxygen[J]. J Catal, 2019,377:619-628. doi: 10.1016/j.jcat.2019.08.006

    33. [33]

      MASA J, WEIDE P, PEETERS D, SINEV I, XIA Wei, SUN Zhen-yu, SOMSEN C, MUHLER M, SCHUHMANN W. Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting:oxygen and hydrogen evolution[J]. Adv Energy Mater, 2016,6(6)1502313. doi: 10.1002/aenm.201502313

    34. [34]

      LI C, ZHANG Z, WU M, LIU R. FeCoNi ternary alloy embedded mesoporous carbon nanofiber:an efficient oxygen evolution catalyst for rechargeable zinc-air battery[J]. Mater Lett, 2019,238:138-142. doi: 10.1016/j.matlet.2018.11.160

    35. [35]

      WANG J, ZHANG W, ZHENG Z, LIU J, YU C, CHEN Y, MA K. Dendritic core-shell Ni@Ni(Fe)OOH metal/metal oxyhydroxide electrode for efficient oxygen evolution reaction[J]. Appl Surf Sci, 2019,469:731-738. doi: 10.1016/j.apsusc.2018.10.232

    36. [36]

      LU M, WANG L, JIANG B, ZHENG J. An efficient electrocatalyst by electroless cobalt-nickel-phosphorus alloy plating on three-dimensional graphene for hydrogen evolution reaction[J]. J Electrochem Soc, 2019,166(2):D69-D76. doi: 10.1149/2.1261902jes

    37. [37]

      XU J, LI J, XIONG D, ZHANG B, LIU Y, WU K H, AMORIM I, LI W, LIU L. Trends in activity for the oxygen evolution reaction on transition metal (M=Fe, Co, Ni) phosphide pre-catalysts[J]. Chem Sci, 2018,9(14):3470-3476. doi: 10.1039/C7SC05033J

    38. [38]

      NACHIMUTHU S, LAI P J, JIANG J C. Efficient hydrogen storage in boron doped graphene decorated by transition metals-A first-principles study[J]. Carbon, 2014,73:132-140. doi: 10.1016/j.carbon.2014.02.048

    39. [39]

      SANKARAN M, VISWANATHAN B, MURTHY S. Boron substituted carbon nanotubes-How appropriate are they for hydrogen storage?[J]. Int J Hydrogen Energy, 2008,33(1):393-403. doi: 10.1016/j.ijhydene.2007.07.042

    40. [40]

      SURYANTO B H R, WANG Yun, HOCKING R K, ADAMSON W, ZHAO C. Overall electrochemical splitting of water at the heteroge-neous interface of nickel and iron oxide[J]. Nat Commun, 2019,10:5599-5609. doi: 10.1038/s41467-019-13415-8

    41. [41]

      TIAN Y, YE Y, WANG X, PENG S, WEI Z, ZHANG X, LIU W. Three-dimensional N-doped, plasma-etched graphene:Highly active metal-free catalyst for hydrogen evolution reaction[J]. Appl Catal A:Gen, 2017,529:127-133.  

    42. [42]

      SHINAGAWA T, GARCIA E A T, TAKANABE K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion[J]. Sci Rep, 2015,513801. doi: 10.1038/srep13801

    43. [43]

      CAO Chu-nan. Principle of Corrosion Electrochemistry[M]. 3rd ed. Beijing:Chemical Industry Press, 2008.

    44. [44]

      MAO H, GUO X, FU Y, YANG H, ZHANG Y, ZHANG R, SONG X. Enhanced electrolytic oxygen evolution by the synergistic effects of trimetallic FeCoNi boride oxides immobilized on polypyrrole/reduced graphene oxide[J]. J Mater Chem A, 2020,8(4):1821-1828. doi: 10.1039/C9TA10756H

    45. [45]

      QU K, ZHENG Y, ZHANG X, DAVEY K, DAI S, QIAO S. Promotion of electrocatalytic hydrogen evolution reaction on nitrogen-doped carbon nanosheets with secondary heteroatoms[J]. ACS Nano, 2017,11(7):7293-7300. doi: 10.1021/acsnano.7b03290

    46. [46]

      GARCÍA O D A, JAIMES R, VAZQUEZ A J, LARA R H. The kinetic parameters of the oxygen evolution reaction (OER) calculated on inactive anodes via EIS transfer functions:·OH formation[J]. J Electrochem Soc, 2017,164(11):E3321-E3328. doi: 10.1149/2.0321711jes

    47. [47]

      NSANZIMANA J M V, DANGOL R, REDDU V, DOU S, PENG Y, DINH K N, HUANG Z, YAN Q, WANG X. Facile synthesis of amorphous ternary metal borides-reduced graphene oxide hybrid with superior oxygen evolution activity[J]. ACS Appl Mater Interfaces, 2019,11(1):846-855. doi: 10.1021/acsami.8b17836

  • 加载中
    1. [1]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    2. [2]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    3. [3]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    4. [4]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    5. [5]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    6. [6]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    7. [7]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    8. [8]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    9. [9]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    10. [10]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    11. [11]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    12. [12]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    13. [13]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

    14. [14]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    15. [15]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    16. [16]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    18. [18]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    19. [19]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    20. [20]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

Metrics
  • PDF Downloads(3)
  • Abstract views(1479)
  • HTML views(247)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return