Citation: Wenxin Wang, Hong Qi, Yimin Ding. Research Progress in Hydrated Salt Composite Phase Change Energy Storage Materials[J]. Chemistry, ;2021, 84(4): 330-338. shu

Research Progress in Hydrated Salt Composite Phase Change Energy Storage Materials

  • Corresponding author: Yimin Ding, ymding@shu.edu.cn
  • Received Date: 27 September 2020
    Accepted Date: 29 November 2020

Figures(2)

  • Inorganic hydrated salt phase change energy storage materials have the advantages of high latent heat, moderate phase transition temperature, low price, etc., and are widely applied in the field of efficient utilization of solar energy, inter-seasonal heat storage and heating, utilization of industrial waste heat, and textile industry. However, problems such as super-cooling, phase separation, and low thermal conductivity restrict their practical application. In this paper, the research progress of hydrated salt composite phase change energy storage materials in recent years is reviewed, and the causes of the phenomenon of super-cooling and phase separation in hydrated salt phase transition are analyzed. The degree of super-cooling can be reduced by the methods of nucleating agent, porous matrix adsorption, microcapsule and other methods. The phase separation can be improved by the methods of thickening agent, crystal shape changing agent and other methods. The property of thermal conductivity of hydrated salt phase change energy storage materials can be improved by combining with high thermal conductivity nano particles and porous thermal conductivity matrix. The future research directions of hydrated salt phase change energy storage materials are prospected, which can be studied from the aspects of combining with computational chemistry, searching for inorganic shell materials and exploring the eutectic system.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

    5. [5]

    6. [6]

      Hadjieva M, Stoykov R, Filipova T. Renew. Energ., 2000, 19(1): 111~115.

    7. [7]

      Ye F, Qu J L, Zhong J Y, et al. Chin. J. Process Eng., 2010, 10(6): 1231~1241.

    8. [8]

    9. [9]

      Pomianowski M, Heiselberg P, Zhang Y. Energy Build., 2013, 67(4): 56~69.

    10. [10]

    11. [11]

      Pielichowska K, Pielichowski K. Prog. Mater. Sci., 2014, 65: 67~123. 

    12. [12]

      Mavrigiannaki A, Ampatzi E. Renew. Sust. Energ. Rev., 2016, 60: 852~866. 

    13. [13]

    14. [14]

    15. [15]

    16. [16]

    17. [17]

    18. [18]

      Herlach D. J. Alloys Compd., 2010, 509: S13-S17.

    19. [19]

    20. [20]

    21. [21]

    22. [22]

    23. [23]

      Feng G, Xu X, Li G, et al. Mater. Res. Innov., 2015, 19(s5): 983~987.

    24. [24]

    25. [25]

      Cui W, Yuan Y, Sun L, et al. Renew. Energ., 2016, 99: 1029~1037. 

    26. [26]

      Liu Y, Yang Y. Sol. Energy Mater. Sol. Cells, 2017, 160: 18~25. 

    27. [27]

    28. [28]

      Xiao Q H, Yuan W H, Li L, et al. Sol. Energy Mater. Sol. Cells, 2018, 179: 339~345. 

    29. [29]

    30. [30]

      Zhou S Y, Zhou Y, Ling Z Y, et al. Appl. Therm. Eng., 2018, 133: 446~451. 

    31. [31]

    32. [32]

      Zhao L, Xing Y M, Liu X, et al. Appl. Therm. Eng., 2018, 143: 172~181. 

    33. [33]

      Peng S Q, Huang J, Wang T Y, et al. Thermochim. Acta, 2019, 675: 1~8. 

    34. [34]

      Fang Y T, Su J M, Tang Y F, et al. Int. J. Energy Res., 2020, 44(4): 3171~3182. 

    35. [35]

      Huang J, Wang T Y, Zhu P P, et al. Thermochim. Acta, 2013, 557: 1~6. 

    36. [36]

      Zhang X X, Li X, Zhou Y, et al. Energy Fuels, 2018, 32(1): 916~921. 

    37. [37]

      Fu W W, Zou T, Liang X H, et al. Sol. Energy Mater. Sol. Cells, 2019, 193: 149~156. 

    38. [38]

    39. [39]

      Salaün F, Devaux E, Bourbigot S, et al. Carbohydr. Polym., 2008, 73: 231~240. 

    40. [40]

    41. [41]

      Sharma A, Tyagi V V, Chen C R, et al. Renew. Sust. Energ. Rev., 2009, 13(2): 318~345. 

    42. [42]

      Dutil Y, Rousse D R, Salah N B, et al. Renew. Sust. Energ. Rev., 2011, 15(1): 112~130. 

    43. [43]

      Yang Y Y, Luo J, Li S H, et al. Sol. Energy Mater. Sol. Cells, 2015, 139(8): 88~94.

    44. [44]

      Lee J, Ashokkumar M, Kentish S E. Ultrason. Sonochem., 2014, 21(1): 60~68. 

    45. [45]

      Lu Y J, Wei B. J. Chem. Phys., 2006, 125(14): 144503. 

    46. [46]

      Cao H, You C J, Yu B, et al. Mater. Res. Innov., 2014, 18(S2): 696~699.

    47. [47]

      Li X, Zhou Y, Nian H. et al. Appl. Therm. Eng., 2016, 102(6): 708~715.

    48. [48]

    49. [49]

    50. [50]

      Cabeza L C, Svensson G, Hiebler S, et al. Appl. Therm. Eng., 2003, 23(13): 1697~1704. 

    51. [51]

    52. [52]

    53. [53]

    54. [54]

    55. [55]

      Ueki Y, Fujita N, Kawai M, et al. Fusion Eng. Des., 2018, 136: 1295~1299. 

    56. [56]

    57. [57]

      Liu Y, Liu W J, Zhang S H, et al. Appl. Therm. Eng., 2019, 163: 114386. 

    58. [58]

    59. [59]

      Kenisarin M, Mahkamov K. Sol. Energy Mater. Sol. Cells, 2016, 145: 255~286. 

    60. [60]

      Xie N, Li Z P, Gao X N, et al. Int. J. Refrig., 2020. 110: 178~186.

    61. [61]

      Hou P M, Mao J F, Liu R R, et al. J. Therm. Anal. Calorim., 2019, 137(4): 1295~1306. 

    62. [62]

      Zou T, Liang X H, Wang S F, et al. Micropor. Mesopor. Mater., 2020, 305: 110403. 

    63. [63]

    64. [64]

      Li T X, Wu D L, He F, et al. Int. J. Heat Mass Transfer, 2017, 115: 148~157.

  • 加载中
    1. [1]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    2. [2]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    3. [3]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    4. [4]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    5. [5]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    6. [6]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060

    7. [7]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    8. [8]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    9. [9]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    10. [10]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    11. [11]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    12. [12]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    13. [13]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    14. [14]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    15. [15]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    16. [16]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    17. [17]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    18. [18]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    19. [19]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    20. [20]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

Metrics
  • PDF Downloads(138)
  • Abstract views(4168)
  • HTML views(1971)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return