Citation: Zhang Jianbo, Huang Fusen, Huang Jun, Zhao Bo, Wang Cheng, Mao Zongqiang. A Review on Subzero Startup of Proton Exchange Membrane Fuel Cell[J]. Chemistry, ;2017, 80(6): 507-516. shu

A Review on Subzero Startup of Proton Exchange Membrane Fuel Cell

  • Corresponding author: Wang Cheng, wangcheng@tsinghua.edu.cn
  • Received Date: 14 September 2016
    Accepted Date: 25 November 2016

Figures(16)

  • During subzero startup process, water generated in oxygen reduction reaction at cathode side of a proton exchange membrane fuel cell (PEMFC) is susceptible to freeze, hindering transport of reactants, covering active sites, reducing electrochemical surface area, leading to significant loss of cell performance and even ending up with a failure to startup. Meanwhile, freeze/thaw cycling will destroy the structure of the membrane electrode assembly (MEA) and impair the life time of PEMFC. Thereby, studies on the subzero startup processes of PEMFCs are crucial to the commercial promotion of fuel cell vehicles. In this article, the experimental studies, mechanistic insights, modeling analysis and coping strategies of the subzero startup operation are reviewed with great details. Furthermore, patents reporting mitigation strategies are also included.
  • 加载中
    1. [1]

    2. [2]

      N Garland. DOE Program/Targets and Workshop Objectives, www.eere.energy.gov/hydrogenandfuelcells/fcfreezeworkshop.html.

    3. [3]

      Y Tabe, M Saito, K Fukui et al. J. Power Sources, 2012, 208:366~373. 

    4. [4]

      J Mishler, Y Wang, R Lujan et al. J. Electrochem. Soc., 2013, 160(6):F514~F521.

    5. [5]

    6. [6]

      R Ichikawa, Y Tabe, T Chikahisa. ECS Transac., 2011, 41(1):733~740.

    7. [7]

      M Saito, Y Tabe, T Chikahisa. ECS Transac., 2009, 25(1):773~779.

    8. [8]

      S Ge, C Y Wang. J. Electrochem. Soc., 2007, 154(12):B1399~B1406.

    9. [9]

      C Chacko, R Ramasamy, S Kim et al. J. Electrochem. Soc., 2008, 155(11):B1145~B1154.

    10. [10]

      E Cho, J J Ko, H Y Ha et al. J. Electrochem. Soc., 2003,150(12):A1667~A1670.

    11. [11]

      E Cho, J J Ko, H Y Ha et al. J. Electrochem. Soc., 2004,151(5:) A661~A665.

    12. [12]

      S Ge, C Y Wang. Electrochim. Acta, 2007, 52(14):4825~4835. 

    13. [13]

      P Oberholzer, P Boillat, R Siegrist et al. J. Electrochem. Soc., 2011, 159(2):B235~B245.

    14. [14]

      C Chacko, R Ramasamy, S Kim et al. J. Electrochem. Soc., 2008, 155(11):B1145~B1154.

    15. [15]

      K Jiao, I E Alaefour, G Karimi et al. Electrochim. Acta, 2011, 56(8):2967~2982. 

    16. [16]

      R Lin, Y Weng, Y Li et al. Int. J. Hydrogen Energy, 2014, 39(28):16025~16035. 

    17. [17]

      R Lin, Y Weng, Y Li et al. Int. J. Hydrogen Energy, 2014, 39(32):18369~18378. 

    18. [18]

      Q Yan, H Toghiani, Y W Lee et al. J. Power Sources, 2006, 160(2):1242~1250. 

    19. [19]

      C Lee, W Mérida. J. Power Sources, 2007, 164(1):141~153. 

    20. [20]

      Y Lee, B Kim, Y Kim et al. Appl. Energy, 2011, 88(12):5111~5119. 

    21. [21]

      X G Yang, Y Tabuchi, F Kagami et al. J. Electrochem. Soc., 2008, 155(7):B752~B761.

    22. [22]

      E Endoh, N Onoda, Y Kaneko et al. ECS Electrochem. Lett., 2013, 2(10):F73~F75.

    23. [23]

      M Luo, C Huang, W Liu et al. Int. J. Hydrogen Energy, 2010, 35(7):2986~2993. 

    24. [24]

      K Weisbrod, J Hedstrom, J Tafoya et al. Cold-start dynamics of a PEM fuel cell stack. Proceedings of Fuel Cell Seminar, 2000.

    25. [25]

      M Sundaresan, R M Moore. J. Power Sources, 2005, 145(2):534~545. 

    26. [26]

      M Khandelwal, S Lee, M M Mench. J. Power Sources, 2007, 172(2):816~830. 

    27. [27]

      L Mao, C Y Wang. J. Electrochem. Soc., 2007, 154(2):B139~B146.

    28. [28]

      Y Wang, P P Mukherjee, J Mishler et al. Electrochim. Acta, 2010, 55(8):2636~2644. 

    29. [29]

      L Mao, C Y Wang, Y Tabuchi. J. Electrochem. Soc., 2007, 154(3):B341~B351.

    30. [30]

      K Jiao, X Li. Electrochim. Acta, 2009, 54(27):6876~6891. 

    31. [31]

      R J Balliet, J Newman. J. Electrochem. Soc., 2011, 158(8):B927~B938.

    32. [32]

      R J Balliet, J Newman. J. Electrochem. Soc., 2011, 158(8):B939~B947.

    33. [33]

      R J Balliet, J Newman. J. Electrochem. Soc., 2011, 158(8):B948~B956.

    34. [34]

      N Konno, S Mizuno, H Nakaji et al. SAE Int. J. Alternative Powertrains, 2015, 4(1):123~129.

    35. [35]

      S Hirakata, T Mochizuki, M Uchida et al. Electrochim. Acta, 2013, 108:304~312. 

    36. [36]

      S Hirakata, M Hara, K Kakinuma et al. Electrochim. Acta, 2014, 120:240~247. 

    37. [37]

      Y Hiramitsu, N Mitsuzawa, K Okada et al. J. Power Sources, 2010, 195(4):1038~1045. 

    38. [38]

      K Tajiri, Y Tabuchi, F Kagami et al. J. Power Sources, 2007, 165(1):279~286. 

    39. [39]

      K Sekizawa, N Kitamura, K Manabe et al. ECS Transac., 2010, 33(1):1947~1957.

    40. [40]

      K Manabe, Y Naganuma, Y Nonobe et al. SAE Technical Paper, 2010.

    41. [41]

      Oh I H, Ko J J, Ha H Y et al. US:6953631-B2.

    42. [42]

    43. [43]

    44. [44]

    45. [45]

      N J Fletcher, G A Boehm, E G Pow et al. US:5798186.

    46. [46]

      J Roberts, M van der Geest, J St-Pierre et al. US:6764780B2.

    47. [47]

      S Haufe, S Kial, D Metzner et al. DE:102008025966 A1.

    48. [48]

    49. [49]

    50. [50]

      S Kameswaran, R Zaffou, T Suzuki et al. WO:WO2010132050 A1.

    51. [51]

    52. [52]

    53. [53]

    54. [54]

      T Narihiro, K Kuri. US:8900769.

  • 加载中
    1. [1]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    2. [2]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    3. [3]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    4. [4]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    5. [5]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060

    6. [6]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    7. [7]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    8. [8]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    9. [9]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    10. [10]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    11. [11]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    12. [12]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    13. [13]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    14. [14]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    15. [15]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    16. [16]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    17. [17]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    18. [18]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    19. [19]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    20. [20]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

Metrics
  • PDF Downloads(50)
  • Abstract views(3129)
  • HTML views(1095)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return