Citation: SONG Li-juan, HU Yue-ting, QIN Yu-cai, YU Wen-guang, ZHANG Xiao-tong. Mechanism of effects of surface acidity on performance of adsorption desulfurization of NiY zeolites[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(9): 1082-1088. shu

Mechanism of effects of surface acidity on performance of adsorption desulfurization of NiY zeolites

  • Corresponding author: SONG Li-juan, lsong56@263.net
  • Received Date: 29 February 2016
    Revised Date: 12 May 2016

    Fund Project: China National Petroleum Corporation Refinery Catalyst Major Projects 10-01A-01-01-01the National Natural Science Foundation of China 21076100the National Natural Science Foundation of China 21376114

Figures(8)

  • The adsorption behaviors of thiophene, cyclohexene and benzene, and competitive adsorption of thiophene & cyclohexene, and thiophene & benzene over NiY zeolites were studied by in situ Py-FTIR spectroscopy method. The results of single probe molecular adsorption indicate that the Lewis (L) acid sites according to Ni species are the major active centers for the thiophene adsorption, more over the Brönsted (B) acid sites of the NiY and HY are the catalytic active centers of the protonation and oligomerization of thiophene and cyclohexene, while the reaction intensity on NiY is significantly weaker than that on HY zeolite. The competitive adsorption results show that the strongly adsorbed dimeric cyclohexene on B acidic sites in NiY zeolite plays a significant competitive adsorption to thiophene adsorption behavior. The effective solutions to solve the competitive adsorption from olefins and aromatics to thiophene are to reduce the surface B acid centers of the adsorbent and to increase temperature of adsorption system.
  • 加载中
    1. [1]

      BABICH I V, MOULIJN J A. Science and technology of novel processes for deep desulfurization of oil refinery streams: A review[J]. Fuel, 2003,82(6):607-631. doi: 10.1016/S0016-2361(02)00324-1

    2. [2]

      SONG C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel[J]. Catal Today, 2003,86(1):211-263.  

    3. [3]

      HERNANDEZ-MALDONADO A J, YANG R T. Desulfurization of transportation fuels by adsorption[J]. Catal Rev, 2004,46(2):111-150. doi: 10.1081/CR-200032697

    4. [4]

      HERNANDEZ-MALDONADO A J, YANG R T. Desulfurization of diesel fuels via π-complexation with Nickel (Ⅱ)-exchanged X-and Y-zeolites[J]. Ind Eng Chem Res, 2004,43:1081-1089. doi: 10.1021/ie034206v

    5. [5]

      HERNANDEZ-MALDONADO A J, YANG F H, QI G S, YANG R T. Desulfurization of transportation fuels by π-complexation sorbents: Cu (Ⅰ)-, Ni (Ⅱ)-, and Zn (Ⅱ)-zeolites[J]. Appl Catal B: Environ, 2005,56(1/2):111-126.

    6. [6]

      JU Xiu-Fang. Preparation of NiY and mechanisms of its selective adsorptive desulfurization[D]. Fushun: Liaoning Shihua University, 2009.

    7. [7]

      SONG Li-juan, PAN Ming-xue, QIN Yu-cai, JU Xiu-fang, DUAN Lin-hai, CHEN Xiao-lu. Selective adsorption desulfurization performance and adsorptive mechanisms of NiY zeolites[J]. Chem J Chin Univ, 2011,32(3):787-792.  

    8. [8]

      TANG X L, SHI L. Study of the adsorption reactions of thiophene on Cu (Ⅰ)/HY-Al2O3 by Fourier transform infrared and temperature-programmed desorption: Adsorption, desorption, and sorbent regeneration mechanisms[J]. Langmuir, 2011,27(19):11999-12007. doi: 10.1021/la2025654

    9. [9]

      GAO J J, LI H Q, ZHANG H X, LU Y Z, MENG H, LI C X. Removal mechanism of thiophenic compounds in model oil by inorganic Lewis acids[J]. Ind Eng Chem Res, 2012,51(12):4682-4691. doi: 10.1021/ie202831p

    10. [10]

      SHAO X C, ZHANG X T, YU W G, WU Y Y, QIN Y C, SUN Z L, SONG L J. Effects of surface acidities of MCM-41 modified with MoO3 on adsorptive desulfurization of gasolin[J]. Appl Sur Sci, 2012,263:1-7. doi: 10.1016/j.apsusc.2012.07.142

    11. [11]

      WANG Wang-yin, PAN Ming-xue, QIN Yu-cai, WANG Ling-tao, SONG Li-juan. Effects of surface acidity on the adsorption desulfurization of Cu (Ⅰ) Y Zeolites[J]. Acta Phys Chim Sin, 2011,27(5):1176-1180.

    12. [12]

      SHAO Xin-chao, DUAN Lin-hai, WU Yu-ye, QIN Yu-cai, YU Wen-guang, WANG Yuan, LI Huai-lei, SUN Zhao-lin, SONG Li-juan. Effect of surface acidity of CuO-SBA-15 on adsorptive desulfurization of fuel oils[J]. Acta Phys Chim Sin, 2012,28(6):1467-1473.  

    13. [13]

      WANG Hong-guo, JIANG Heng, XU Jing, SUN Zhao-lin, ZHANG Xiao-tong, ZHU He-li, SONG LI-juan. Effects of benzene and 1-octene on desulfurization by selective adsorption with Ce (Ⅳ) Y[J]. Acta Phys Chim Sin, 2008,24(9):1714-1718.

    14. [14]

      ZU Yun, QIN Yu-cai, GAO Xiong-hou, MO Zhou-sheng, ZHANG Lei, ZHANG Xiao-tong, SONG Li-juan. Mechanisms of thiophene conversion over the modified Y zeolites under catalytic cracking conditions[J]. J Fuel Chem Technol, 2015,43(7):862-869.  

    15. [15]

      LAMBERTI C, ZECCHINA A, GROPPO E, BORDIGA S. Probing the surfaces of heterogeneous catalysts by in situ IR spectroscopy[J]. Chem Soc Rev, 2010,39(12):4951-5001. doi: 10.1039/c0cs00117a

    16. [16]

      LERCHER J A, GRUNDLING C, EDER-MIRTH G. Infrared studies of the surface acidity of oxides and zeolites using adsorbed probe molecules[J]. Catal Today, 1996,27(3):353-376.  

    17. [17]

      COUGHLAN B, KEANE M A. A catalytic and characterization study of the surface acidity generated on the reduction of copper exchanged Y zeolites[J]. Catal Lett, 1990,5(2):113-125. doi: 10.1007/BF00763944

    18. [18]

      XIN Qin, ZHANG Hui, LI Xin-sheng, LI Can. Investigation of the coadsorption of thiophene with CO or NO on Co-Mo/Al2O3 catalysts by infrared spectroscopy[J]. J Fuel Chem Technol, 1991,19(4):333-338.  

    19. [19]

      GEOBALDO F, PALOMINO G T, BORDIGA S, ZECCHINA A, AREÁN C O. Spectroscopic study in the UV-Vis, near and mid IR of cationic species formed by interaction of thiophene, dithiophene and terthiophene with the zeolite HY[J]. Phys Chem Chem Phys, 1999,1(4):561-569. doi: 10.1039/a807353h

    20. [20]

      DE ANGELIS B A, APPLERTO G J. Infrared spectroscopic study of thiophene adsorbed on zeolites[J]. J Colloid Interf Sci, 1975,53(1):14-19. doi: 10.1016/0021-9797(75)90029-6

    21. [21]

      YANG S, KONDO J N, DOMEN K. Formation of alkenyl carbenium ions by adsorption of cyclic precursors on zeolites[J]. Catal today, 2002,73(1):113-125.  

    22. [22]

      KONDO J N, SHAO L, WAKABAYASHI F, DOMEN K. Doublebond migration of an olefin without protonated species on H (D) form zeolites[J]. J Phys Chem B, 1997,101(45):9314-9320. doi: 10.1021/jp971812t

    23. [23]

      KONDO J N, WAKABAYASHI F, DOMEN K. IR study of adsorption of olefins on deuterated ZSM-5[J]. J Phys Chem B, 1998,102(12):2259-2262. doi: 10.1021/jp9800416

    24. [24]

      ANGELL C L, HOWELL M V. Infrared spectroscopic investigations of zeolites and adsorbed molecules: III Aromatic hydrocarbons[J]. J Colloid Interf Sci, 1968,28(2):279-287. doi: 10.1016/0021-9797(68)90131-8

  • 加载中
    1. [1]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    2. [2]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    3. [3]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    4. [4]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    5. [5]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    6. [6]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    7. [7]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    8. [8]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    9. [9]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    10. [10]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    11. [11]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    12. [12]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    13. [13]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    14. [14]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    15. [15]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    16. [16]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    17. [17]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    18. [18]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    19. [19]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    20. [20]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

Metrics
  • PDF Downloads(0)
  • Abstract views(834)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return