Citation: HAO Cheng-hao, ZHU Sheng-hua, BAI Yong-hui, LI Fan. Effect of CO2 on pyrolysis behavior of Shengli lignite[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(3): 272-278. shu

Effect of CO2 on pyrolysis behavior of Shengli lignite

  • Corresponding author: LI Fan, lifan66@hotmail.com
  • Received Date: 2 November 2016
    Revised Date: 30 December 2016

Figures(9)

  • The pyrolysis of Shengli lignite (5-8 mm) under CO2 atmosphere was investigated at the temperature from 400 to 700℃ in a fixed bed reactor, the effect of CO2 on the distribution of gas, solid and liquid phase in the product was analyzed, and the influence mechanism on the char structure under CO2 atmosphere was explored. The results indicate that the yields of tar and water from pyrolysis under CO2 atmosphere are higher than that under N2 atmosphere, with a decrease in char and gas yield. At 400℃ and 500℃, the surface area and pore volume of the char prepared under CO2 atmosphere are nearly the same as that under N2 atmosphere, while at 600 and 700℃, the surface area and pore volume of the char prepared under CO2 atmosphere are higher than that under N2 atmosphere. It maybe attributes to that CO2 can not only promote the release of volatile, but can also react with the active sites in the channels of char. The introduction of CO2 into pyrolysis can increase the aromaticity of char due to the consumption of 3-5 rings aromatic structures. The yields of H2 and CH4 obtained from pyrolysis under CO2 atmosphere are lower than that obtained under N2 atmosphere at 600 and 700℃, and the yield of CO is much higher because of the occurrence of the char-CO2 reaction.
  • 加载中
    1. [1]

      ZHAO Hong, GUO Fei, YANG Jian-guo. Adsorption characteristic of Indonesia Lignite and dewater experiment[J]. J China Coal Soc, 2008,33(7):799-802.  

    2. [2]

      YU J H, ARASH T, HAN Y N, YIN F K, LI X C. A review on water in low rank coals:The existence, interaction with coal structure and effects on coal utilization[J]. Fuel Process Technol, 2013,106(2):9-20.  

    3. [3]

      ÖZTAZTA N A, YÜRÜM Y. Pyrolysis of Turkish Zonguldak bituminous coal. Part 1. Effect of mineral matter[J]. Fuel, 2000,79(10):1221-1227. doi: 10.1016/S0016-2361(99)00255-0

    4. [4]

      GAN Jian-ping, MA Bao-qi, SHANG Jian-xuan, MA Xiao-xun, YANG Zhan-biao. Formation and development of the coal grading conversion ideas[J]. Coal Chem Ind, 2013,41(1):3-6.  

    5. [5]

      ZHOU Jun, YANG Zhe, WU Lei, ZHANG Qiu-li, LAN Xin-zhe, SHANG Wen-zhi. Study on microwave pyrolysis of low rank coal under CO2 atmosphere[J]. J China Coal Soc, 2015,40(10):2465-2471.  

    6. [6]

      GAO S P, ZHAO J T, WANG Z Q, WANG J F, Fang Y T, HUANG J J. Effect of CO2 on pyrolysis behaviors of lignite[J]. Thin Solid Films, 2013,41(3):257-264.  

    7. [7]

      DUAN Lun-bo, ZHAO Chang-sui, ZHOU Wu, QU Cheng-rui, LI Ying-jie, CHEN Xiao-ping. Effect of CO2 atmosphere on the pyrolysis process of bituminous coal[J]. Proc CSEE, 2010,30(2):62-66.  

    8. [8]

      GUIZANI C, SANZ F J E, SALVADOR S. Effects of CO2 on biomass fast pyrolysis:Reaction rate, gas yields and char reactive properties[J]. Fuel, 2014,116:310-320. doi: 10.1016/j.fuel.2013.07.101

    9. [9]

      JAMIL K, HAYASHI J I, LI C Z. Pyrolysis of a Victorian brown coal and gasification of nascent char in CO2 atmosphere in a wire-mesh reactor[J]. Fuel, 2004,83(7/8):833-843.  

    10. [10]

      WANG P F, JIN L J, LIU J H, ZHU S W, HU H Q. Analysis of coal tar derived from pyrolysis at different atmospheres[J]. Fuel, 2013,104(2):14-21.  

    11. [11]

      LI X J, HAYASHI J I, LI C Z. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel, 2006,85(12):1700-1707.  

    12. [12]

      LI X J, HAYASHI J I, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅶ. Raman spectroscopic study on the changes in char structure during the catalytic gasification in air[J]. Fuel, 2006,85(10/11):1509-1517.  

    13. [13]

      ZHANG S, MIN Z H, TAY H L, ASADULLAH M, LI C Z. Effects of volatile-char interactions on the evolution of char structure during the gasification of Victorian brown coal in steam[J]. Fuel, 2011,90(4):1529-1535. doi: 10.1016/j.fuel.2010.11.010

    14. [14]

      NAREDI P, PISUPATI S. Effect of CO2 during coal pyrolysis and char burnout in oxy-coal combustion[J]. Energy Fuels, 2011,25(6):2452-2459. doi: 10.1021/ef200197w

    15. [15]

      CAI H Y, MEGARITIS A, MESSENBÖCK R, DIX M, DUGGWELL D R, KANDIYOTI R. Pyrolysis of coal maceral concentrates under pf-combustion conditions (Ⅰ):Changes in volatile release and char combustibility as a function of rank[J]. Fuel, 1998,77(12):1273-1282. doi: 10.1016/S0016-2361(98)00039-8

    16. [16]

      LIU Yuan, HE Xin-fu, YANG Fu-sheng, ZHANG Ya-gang, REN Xiu-bin, ZHOU An-ning. Impacts of pyrolysis temperature and atmosphere on product distribution of Shenfu coal pyrolysis[J]. J China Coal Soc, 2015,40(S2):497-504.  

    17. [17]

      QIU Ji-hua. Variation of surface area and pore structure of pulverized coal during pyrolysis[J]. J Fuel Chem Technol, 1994,22(3):316-320.  

    18. [18]

      LORENZ H, CARREA E, TAMURA M, HAAS J. The role of char surface structure development in pulverized fuel combustion[J]. Fuel, 2000,79(10):1161-1172. doi: 10.1016/S0016-2361(99)00259-8

    19. [19]

      ZHOU Yi, DUAN Yu-feng, CHEN Xiao-ping, ZHAO Chang-sui, WU Xin. Influential factors on pore structure of coal-char[J]. Boiler Technol, 2005,36(4):34-38.  

    20. [20]

      BAI Yong-hui. Influence mechanism of CO2 on char-steam gasification[D]. Taiyuan:Taiyuan University of Technology, 2014.

    21. [21]

      ASADULLAH M, ZHANG S, MIN Z H, YIMSIRI P, LI C Z. Effects of biomass char structure on its gasification reactivity[J]. Bioresour Technol, 2010,101(20):7935-43. doi: 10.1016/j.biortech.2010.05.048

    22. [22]

      SHEN Jun, WANG Zhi-zhong. Study on variation of micro-pores ( < 100 nm) and volatile components of different rank coals during carbonization[J]. J China Coal Soc, 2007,32(6):626-629.  

    23. [23]

      LIU Xiao-fei, YOU Jing-lin, WANG Yuan-yuan, LU Li-ming, XIE Ying-fang, YU Li-wang, FU Qing. Raman spectroscopic study on the pyrolysis of Australian bituminous coal[J]. J Fuel Chem Technol, 2014,42(3):270-276. doi: 10.1016/S1872-5813(14)60019-0 

    24. [24]

      ZHAO Li-hong, GUO Hui-qing, MA Qing-lan. Study on gaseous products distributions during coal pyrolysis[J]. Coal Convers, 2007,30(1):5-9.  

    25. [25]

      ARENILLAS A, RUBIERA F, PIS J J. Simultaneous thermogravimetric-mass spectrometric study on the pyrolysis behaviour of different rank coals[J]. J Anal Appl Pyrolysis, 1999,50(1):31-46. doi: 10.1016/S0165-2370(99)00024-8

    26. [26]

      HE Xuan-ming. Coal Chemistry[M]. Version 2. Beijing:Metallurgical Industry Press, 2010.

    27. [27]

      ZHU Xue-dong, ZHU Zi-bin, TANG Li-hua, ZHANG Cheng-fang. Fundamental study on the pyrolysis of coals[J]. J East China Univ Sci Technol, 1998,24(1):37-41.  

  • 加载中
    1. [1]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    4. [4]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    5. [5]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    6. [6]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    7. [7]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    10. [10]

      Xiang-Da ZhangJian-Mei HuangXiaorong ZhuChang LiuYue YinJia-Yi HuangYafei LiZhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937

    11. [11]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    12. [12]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    13. [13]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    14. [14]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    15. [15]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    18. [18]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    19. [19]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    20. [20]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

Metrics
  • PDF Downloads(5)
  • Abstract views(802)
  • HTML views(147)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return