Effect of CO2 on pyrolysis behavior of Shengli lignite
- Corresponding author: LI Fan, lifan66@hotmail.com
Citation:
HAO Cheng-hao, ZHU Sheng-hua, BAI Yong-hui, LI Fan. Effect of CO2 on pyrolysis behavior of Shengli lignite[J]. Journal of Fuel Chemistry and Technology,
;2017, 45(3): 272-278.
ZHAO Hong, GUO Fei, YANG Jian-guo. Adsorption characteristic of Indonesia Lignite and dewater experiment[J]. J China Coal Soc, 2008,33(7):799-802.
YU J H, ARASH T, HAN Y N, YIN F K, LI X C. A review on water in low rank coals:The existence, interaction with coal structure and effects on coal utilization[J]. Fuel Process Technol, 2013,106(2):9-20.
ÖZTAZTA N A, YÜRÜM Y. Pyrolysis of Turkish Zonguldak bituminous coal. Part 1. Effect of mineral matter[J]. Fuel, 2000,79(10):1221-1227. doi: 10.1016/S0016-2361(99)00255-0
GAN Jian-ping, MA Bao-qi, SHANG Jian-xuan, MA Xiao-xun, YANG Zhan-biao. Formation and development of the coal grading conversion ideas[J]. Coal Chem Ind, 2013,41(1):3-6.
ZHOU Jun, YANG Zhe, WU Lei, ZHANG Qiu-li, LAN Xin-zhe, SHANG Wen-zhi. Study on microwave pyrolysis of low rank coal under CO2 atmosphere[J]. J China Coal Soc, 2015,40(10):2465-2471.
GAO S P, ZHAO J T, WANG Z Q, WANG J F, Fang Y T, HUANG J J. Effect of CO2 on pyrolysis behaviors of lignite[J]. Thin Solid Films, 2013,41(3):257-264.
DUAN Lun-bo, ZHAO Chang-sui, ZHOU Wu, QU Cheng-rui, LI Ying-jie, CHEN Xiao-ping. Effect of CO2 atmosphere on the pyrolysis process of bituminous coal[J]. Proc CSEE, 2010,30(2):62-66.
GUIZANI C, SANZ F J E, SALVADOR S. Effects of CO2 on biomass fast pyrolysis:Reaction rate, gas yields and char reactive properties[J]. Fuel, 2014,116:310-320. doi: 10.1016/j.fuel.2013.07.101
JAMIL K, HAYASHI J I, LI C Z. Pyrolysis of a Victorian brown coal and gasification of nascent char in CO2 atmosphere in a wire-mesh reactor[J]. Fuel, 2004,83(7/8):833-843.
WANG P F, JIN L J, LIU J H, ZHU S W, HU H Q. Analysis of coal tar derived from pyrolysis at different atmospheres[J]. Fuel, 2013,104(2):14-21.
LI X J, HAYASHI J I, LI C Z. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel, 2006,85(12):1700-1707.
LI X J, HAYASHI J I, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅶ. Raman spectroscopic study on the changes in char structure during the catalytic gasification in air[J]. Fuel, 2006,85(10/11):1509-1517.
ZHANG S, MIN Z H, TAY H L, ASADULLAH M, LI C Z. Effects of volatile-char interactions on the evolution of char structure during the gasification of Victorian brown coal in steam[J]. Fuel, 2011,90(4):1529-1535. doi: 10.1016/j.fuel.2010.11.010
NAREDI P, PISUPATI S. Effect of CO2 during coal pyrolysis and char burnout in oxy-coal combustion[J]. Energy Fuels, 2011,25(6):2452-2459. doi: 10.1021/ef200197w
CAI H Y, MEGARITIS A, MESSENBÖCK R, DIX M, DUGGWELL D R, KANDIYOTI R. Pyrolysis of coal maceral concentrates under pf-combustion conditions (Ⅰ):Changes in volatile release and char combustibility as a function of rank[J]. Fuel, 1998,77(12):1273-1282. doi: 10.1016/S0016-2361(98)00039-8
LIU Yuan, HE Xin-fu, YANG Fu-sheng, ZHANG Ya-gang, REN Xiu-bin, ZHOU An-ning. Impacts of pyrolysis temperature and atmosphere on product distribution of Shenfu coal pyrolysis[J]. J China Coal Soc, 2015,40(S2):497-504.
QIU Ji-hua. Variation of surface area and pore structure of pulverized coal during pyrolysis[J]. J Fuel Chem Technol, 1994,22(3):316-320.
LORENZ H, CARREA E, TAMURA M, HAAS J. The role of char surface structure development in pulverized fuel combustion[J]. Fuel, 2000,79(10):1161-1172. doi: 10.1016/S0016-2361(99)00259-8
ZHOU Yi, DUAN Yu-feng, CHEN Xiao-ping, ZHAO Chang-sui, WU Xin. Influential factors on pore structure of coal-char[J]. Boiler Technol, 2005,36(4):34-38.
BAI Yong-hui. Influence mechanism of CO2 on char-steam gasification[D]. Taiyuan:Taiyuan University of Technology, 2014.
ASADULLAH M, ZHANG S, MIN Z H, YIMSIRI P, LI C Z. Effects of biomass char structure on its gasification reactivity[J]. Bioresour Technol, 2010,101(20):7935-43. doi: 10.1016/j.biortech.2010.05.048
SHEN Jun, WANG Zhi-zhong. Study on variation of micro-pores ( < 100 nm) and volatile components of different rank coals during carbonization[J]. J China Coal Soc, 2007,32(6):626-629.
LIU Xiao-fei, YOU Jing-lin, WANG Yuan-yuan, LU Li-ming, XIE Ying-fang, YU Li-wang, FU Qing. Raman spectroscopic study on the pyrolysis of Australian bituminous coal[J]. J Fuel Chem Technol, 2014,42(3):270-276. doi: 10.1016/S1872-5813(14)60019-0
ZHAO Li-hong, GUO Hui-qing, MA Qing-lan. Study on gaseous products distributions during coal pyrolysis[J]. Coal Convers, 2007,30(1):5-9.
ARENILLAS A, RUBIERA F, PIS J J. Simultaneous thermogravimetric-mass spectrometric study on the pyrolysis behaviour of different rank coals[J]. J Anal Appl Pyrolysis, 1999,50(1):31-46. doi: 10.1016/S0165-2370(99)00024-8
HE Xuan-ming. Coal Chemistry[M]. Version 2. Beijing:Metallurgical Industry Press, 2010.
ZHU Xue-dong, ZHU Zi-bin, TANG Li-hua, ZHANG Cheng-fang. Fundamental study on the pyrolysis of coals[J]. J East China Univ Sci Technol, 1998,24(1):37-41.
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
Xiang-Da Zhang , Jian-Mei Huang , Xiaorong Zhu , Chang Liu , Yue Yin , Jia-Yi Huang , Yafei Li , Zhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Tian-Yu Gao , Xiao-Yan Mo , Shu-Rong Zhang , Yuan-Xu Jiang , Shu-Ping Luo , Jian-Heng Ye , Da-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
Li Li , Fanpeng Chen , Bohang Zhao , Yifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240
Jinglin CHENG , Xiaoming GUO , Tao MENG , Xu HU , Liang LI , Yanzhe WANG , Wenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152