Citation: Qian Wenhao, Li Fusheng, Huang Wei, Cong Yufeng. Applications of MOFs in Sensors[J]. Chemistry, ;2019, 82(2): 99-107. shu

Applications of MOFs in Sensors

  • Corresponding author: Huang Wei, yufengcong@163.com
  • Received Date: 10 September 2018
    Accepted Date: 1 November 2018

Figures(7)

  • Metal-organic frameworks (MOFs), also called porous coordination polymers (PCPs), are a class of crystalline porous materials built from organic linkers and metal ions/clusters. The unique features of MOFs, including high surface area, uniform channels, thermal stability and tailorability enable them have great potential applications in many fields. As the subfield of MOF-based sensing has developed, MOFs with fluorometric sensing properties have been developed by introducing many diverse chemical functionalties. This paper summarizes the topical developments in a number of crucial sensing domains, including ionic species, pH, volatile organic compounds and gas, explosives, biomolecules, and many others, also prospect the development trend of MOFs in chemical sensors.
  • 加载中
    1. [1]

      L E Kreno, K Lenog, O K Farha et al. Chem. Rev., 2012, 112: 1105~1125. 

    2. [2]

      D J Collins, H C Zhou. Mater. Chem., 2007, 17: 3154~3160. 

    3. [3]

      J R Li, Y Ma, M C Mccarthy et al. Chem. Rev., 2011, 255: 1791~1823.

    4. [4]

      J Lee, O K Farha, J Robetrs et al. Chem. Soc. Rev., 2009, 38: 450~1459.

    5. [5]

      D Feng, T F Liu, J Su et al. Nat. Commun., 2015, 6: 5979. 

    6. [6]

      Y Gui, M O'keeffe, N W Ockwig et al. Nature, 2003, 423: 705~714. 

    7. [7]

      M D Allendorf, C A Baure, R K Bhakta et al. Chem. Soc. Rev., 2009, 38: 1330~1352. 

    8. [8]

      K P Cater, A M Young, A E Palmer. Chem. Rev., 2014, 114: 4564~4601. 

    9. [9]

      X L Zhao, D Tian, Q Gao et al. Dalton Transac., 2016, 45: 1040~1046. 

    10. [10]

      J K Gao, X F Qian et al. J. Mater. Chem. A, 2016, 4: 10900~10905. 

    11. [11]

      H Xu, B Zhai, C S Cao et al. Inorg. Chem., 2016, 55: 9671~9676. 

    12. [12]

      H H Wang, L J Zhou, Y L Wang et al. Inorg. Chem. Commun., 2016, 73: 94~97. 

    13. [13]

      C Liu, B Yan. Sens. Actuat. A, 2016, 235: 541~546. 

    14. [14]

      J N Hao, B Yan. New J. Chem., 2016, 40: 4654~4661. 

    15. [15]

      B Ding, S X Liu, Y Cheng et al. Inorg. Chem., 2016, 55: 4391~4402. 

    16. [16]

      Y Q Chen, G R Li, Y K Qu et al. Chem. Sci., 2013, 4: 3678~3682. 

    17. [17]

      J P Ma, Y Yu, Y B Dong. Chem. Commun., 2012, 48: 2946~2948. 

    18. [18]

      P F Shi, H C Hu, Z Y Zhang et al. Chem. Commun., 2015, 51: 3985~3988. 

    19. [19]

      F M Hinterholzinger, S Wuttke, K Karaghioso et al. Sci. Rep., 2013, 3: 2562. 

    20. [20]

      Y Wang, L Cheng, Z Y Liu et al. Chem. Eur. J., 2015, 21: 14171~14178. 

    21. [21]

      S G Chen, Z Z Shi, L Qin et al. Cryst. Growth Des., 2017, 17: 67~72. 

    22. [22]

      J N Hao, B Yan. New J. Chem., 2016, 40: 4654~4661. 

    23. [23]

      B Ding, S X Liu, Y Cheng et al. Inorg. Chem., 2016, 55: 4391~4402. 

    24. [24]

      H Liu, H Wang, T Chu et al. J. Mater. Chem. C, 2014, 2: 8683~8690.

    25. [25]

      X Lian, B Yan. Dalton Transac., 2016, 45: 18668~18675. 

    26. [26]

      B V Harbuzaru, A Corma, F Rey et al. Angew. Chem. Int. Ed., 2009, 48: 6476~6479. 

    27. [27]

      X Y Xu, B Yan. Dalton Transac., 2016, 45: 7078~7084. 

    28. [28]

      H Jiang, D Feng, K Wang et al. J. Am. Chem. Soc., 2013, 135: 13934~13938. 

    29. [29]

      S J Aguliera, D Bradshaw. Chem. Commun., 2014, 50: 4711~4713. 

    30. [30]

      Y Lu, B Yan. Chem. Commun., 2014, 50: 13323~13326. 

    31. [31]

      C He, K Lu, W Lin. J. Am. Chem. Soc., 2014, 136: 12253~12256. 

    32. [32]

      H Sxhecknburger, M H Gschwend, W S L Strauss et al. J. Fluoresc., 1997, 7: 3~10. 

    33. [33]

      Y Hong, J W Y Lam, B Z Tang. Chem. Soc. Rev., 2011, 40: 5361~5388. 

    34. [34]

      N B Shustona, B D Mccarthy, M Dinca. J. Am. Chem. Soc., 2011, 13: 20126~20129.

    35. [35]

      X Zhao, Y Li, Z Chang et al. Dalton Transac., 2016, 45: 14888~14892. 

    36. [36]

      F Wang, W Liu, S J Teat et al. Chem. Commun., 2016, 52: 10249~10252. 

    37. [37]

      N B Shustova, T C Ong, F Cozzline et al. J. Am. Chem. Soc., 2012, 134: 15061~15070. 

    38. [38]

      X G Liu, H Wang, B Chen et al. Chem. Commun., 2015, 51: 1677~1680. 

    39. [39]

      M Zhang, G Feng, Z Song et al. J. Am. Chem. Soc., 2014, 136: 7241~7244. 

    40. [40]

      M J Dong, M Zhao, S Ou et al. Angew. Chem. Int. Ed., 2014, 53: 1575~1579. 

    41. [41]

      J Zhou, H Li, H Zhang et al. Adv. Mater., 2015, 27: 7072~7077. 

    42. [42]

      Y Yu, J P MA, C W Zhao et al. Inorg. Chem., 2015, 54: 11590~11592. 

    43. [43]

      J H Wang, M Li, D Li. Chem. Sci., 2013, 4: 1793~1801. 

    44. [44]

      Z Dou, J Yu, Y Cui et al. J. Am. Chem. Soc., 2014, 136: 5527~5530. 

    45. [45]

      G L Law, R Pal, L O Palsson et al. Chem. Commun., 2009, 7321~7323.

    46. [46]

      L Ma, K E Dekrafft. J. Am. Chem. Soc., 2010, 132: 922~923. 

    47. [47]

      R B Lin, F Li, S Y Liu et al. Angew. Chem. Int. Ed., 2013, 52: 13429~13433. 

    48. [48]

      J W Ye, H L Zhou, S Y Liu et al. Chem. Mater., 2015, 27: 8255~8260. 

    49. [49]

      C W Zhao, J P Ma, Q K Liu et al. Chem. Commun., 2016, 52: 5238~5241. 

    50. [50]

      M Wang, L Gou, D P Cao. Anal. Chem., 2018, 90: 3608~3614. 

    51. [51]

      S Pramanik, C Zheng, X Zhang, T J Emgn et al. J. Am. Chem. Soc., 2011, 133: 4153~4155. 

    52. [52]

      S Pramanik, C Zheng, X Zhang et al. J. Am. Chem. Soc., 2011, 133: 4153~4155. 

    53. [53]

      B Gole, K B Arun, P S Mukherjee. Chem. Eur. J., 2014, 20: 2276~2291. 

    54. [54]

      S S Nagarkar, A V Desai, S K Ghosh. Chem. Commun., 2014, 50: 8915~8918. 

    55. [55]

      Y Gou, X Feng, T Han et al. J. Am. Chem. Soc., 2014, 136: 15485~15488. 

    56. [56]

      Z Hu, W P Lustig, J Zhang et al. J. Am. Chem. Soc., 2105, 137: 16209~16215.

    57. [57]

      B Wang, X L Lv, D Feng et al. J. Am. Chem. Soc., 2016, 138: 6204~6216. 

    58. [58]

      H T Zhang, J W Zhang, G Huang et al. Chem. Commun., 2014, 50: 12069~12072. 

    59. [59]

      L Qin, L X Lin, Z P Fang et al. Chem. Commun., 2016, 52: 132~135. 

    60. [60]

      P Y Du, W Gu, X Liu. Inorg. Chem., 2016, 55: 7826~7828. 

    61. [61]

      J Wang, M Jiang, L Yan et al. Inorg. Chem., 2016, 55: 12660~12668. 

    62. [62]

      R Lv, Z H Y Chen, X Fu et al. J. Solid State Chem., 2018, 259: 67~72. 

    63. [63]

      S G Chen, Z Z Shi, L Qin et al. Cryst. Growth Des., 2017, 17: 67~72. 

    64. [64]

      J M Li, R Li, X Li. Cryst. Eng. Comm., 2018, 20: 4962~4972. 

    65. [65]

      X Y Xu, B Yan. Dalton Transac., 2016, 45: 7078~7084. 

    66. [66]

      Y J Li, Y L. Wang, Q Y Liu. Inorg. Chem., 2017, 56: 2159~2164.

    67. [67]

      X Zhang, K Jiang, H J He et al. Sens. Actuat. B, 2018, 254: 1069~1077. 

    68. [68]

      Z C Zeng, J Wen, H Yan et al. RSC Adv., 2016, 6: 37385~37390. 

    69. [69]

      D K Singha, P Majee, S K Mondal et al. Eur. J. Inorg. Chem., 2016: 4631~4636.

    70. [70]

      J Hromadka, B Tokay, R Correia et al. Sens. Actuat. B, 2018, 260: 685~692. 

    71. [71]

      K Vellingiri, A Deep, K H Kim et al. Sens. Actuat. B, 2017, 241: 938~948. 

    72. [72]

      C Li, J Huang, H Zhu et al. Sens. Actuat. B, 2017, 253: 275~282. 

    73. [73]

      L Wang, G Fan, X Xu et al J. Mater. Chem. A, 2017, 5: 5541~5549. 

    74. [74]

      A H Assen, O Yassine, O Shekhah et al. ACS Sensors, 2017, 2: 1294~1301. 

    75. [75]

      K Vellingiri, D W Boukhvalov, S K Pandey et al. Sens. Actuat. B, 2017, 245: 305~313. 

    76. [76]

      N Bagheria, A Khataee, J Hassanzadeh et al. J. Hazard. Mater., 2018, 360: 233~242. 

    77. [77]

      X Li, L Yang, L Zhao et al. Cryst. Growth Des., 2016, 16: 4374~4382. 

    78. [78]

      B Wang, X L Lv, D Feng et al. J. Am. Chem. Soc., 2016, 138: 6204~6216. 

    79. [79]

      F Zhang, H Yao, Y F Zhao et al. Talanta, 2017, 174: 660~666. 

    80. [80]

      Q Yang, L Y Zhou, Y X Wu et al. Anal. Chim. Acta, 2018, 1020: 1~8. 

    81. [81]

      B P Xie, G H Qiu, P P Hu et al. Sens. Actuat. B, 2018, 254: 1133~1140. 

    82. [82]

      L Q, L X Lin, Z P Fang et al. Chem. Commun., 2016, 52: 132~135. 

    83. [83]

      H Q Zhao, G H Qiu, Z Liang et al. Anal. Chim. Acta, 2016, 922: 55~63. 

    84. [84]

      J F Feng, S Y Gao, T F Liu et al. ACS Appl. Mater. Interf., 2018, 10: 6014~6023. 

    85. [85]

      Y Zhou, D N Zhang, J Zeng et al. Talanta, 2018, 181: 410~415. 

    86. [86]

      J F Feng, T F Liu, J Shi et al. ACS Appl. Mater. Interf., 2018, 10: 20854~20861. 

    87. [87]

      P Yi, H Huang, Y Peng et al. RSC Adv., 2016, 6(113): 111934~111941. 

  • 加载中
    1. [1]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    2. [2]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

    3. [3]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    4. [4]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047

    5. [5]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    8. [8]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    9. [9]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    10. [10]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    11. [11]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    12. [12]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    15. [15]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    16. [16]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    17. [17]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    18. [18]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    19. [19]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    20. [20]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

Metrics
  • PDF Downloads(22)
  • Abstract views(1485)
  • HTML views(436)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return