Citation: ZHONG Mei, ZHAO Yuan, LI Xian, MA Feng-yun. Effects of K+, Ca2+ and Fe3+ on the distribution, structure and quality of the pyrolysis products of Hefeng coal[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(9): 1044-1054. shu

Effects of K+, Ca2+ and Fe3+ on the distribution, structure and quality of the pyrolysis products of Hefeng coal

  • Corresponding author: ZHONG Mei, zhongmei0504@126.com MA Feng-yun, ma_fy@126.com
  • Received Date: 29 March 2018
    Revised Date: 23 June 2018

    Fund Project: the National Natural Science Foundation of China 21766035The project was supported by the National Natural Science Foundation of China (21766035), the Key Project of Joint Fund from National Nature Science Foundation of China and the Government of Xinjiang Uygur Autonomous Region(U1703252)and Youth Science and Technology Innovation Personnel Training Project in Xinjiang Uygur Autonomous Region (QN2016BS0152)the Key Project of Joint Fund from National Nature Science Foundation of China and the Government of Xinjiang Uygur Autonomous Region U1703252Youth Science and Technology Innovation Personnel Training Project in Xinjiang Uygur Autonomous Region QN2016BS0152

Figures(9)

  • The nitrate solution of K+, Ca2+ and Fe3+ was used to treat Hefeng demineralized coal (DC) separately. The weight loss and gas evolution of coal samples were studied by thermogravimetric analyzer. It is found that the total weight loss of treated coal samples decreases, while the concentration of CO2 and H2 increases for treated samples. Then the distribution variation of products during the pyrolysis process of treated coal samples were investigated in a fixed bed reactor together with the analyses of elemental analysis, FT-IR, simulated distillation and GC-MS. The results indicate that the char and gas yields of treated coal samples rise, while the tar yields decline. The unsaturation and condensation of corresponded char samples exhibit a decreasing tendency. Under the action of these metal components, the percentage of light component in the tar increases, especially by 22.4% due to the effect of iron species. GC-MS analysis exhibits that long chain alkanes occupy about 70% of the total relatively, leading to the high content of heavy component in tar, which can be catalytically cracked by K and Fe species.
  • 加载中
    1. [1]

      WANG W S, HUANG S D, ZOU J L. The present situation and policy suggestion of clean coal technology in China[J]. Adv Mater Res, 2013,616/618:1120-1123.

    2. [2]

      SHI L, LIU Q Y, GUO X J, WU W Z, LIU Z Y. Pyrolysis behavior and bonding information of coal-A TGA study[J]. Fuel Process Technol, 2013,108(6):125-132.  

    3. [3]

      BARUAH B P, KHARE P. Pyrolysis of high sulfur Indian coals[J]. Energy Fuels, 2007,21(6):3346-3352. doi: 10.1021/ef070005i

    4. [4]

      LUO K, ZHANG C, ZHU S, BAI Y H, LI F. Tar formation during coal pyrolysis under N2, and CO2, atmospheres at elevated pressures[J]. J Anal Appl Pyrolysis, 2016,118:130-135. doi: 10.1016/j.jaap.2016.01.009

    5. [5]

      LI C S, SUZUKI K. Resources, properties and utilization of tar[J]. Res Cons Recycl, 2010,54(11):905-915. doi: 10.1016/j.resconrec.2010.01.009

    6. [6]

      QU X, LIANG P, WANG Z, ZHANG R, SUN D, GONG X, GAN Z, BI J. Pilot development of polygeneration process of circulating fluidized bed combustion combined with coal pyrolysis[J]. Chem Eng Technol, 2011,34(1):61-68. doi: 10.1002/ceat.v34.1

    7. [7]

      GONG X M, WANG Z, LI S G, SONG W L, LIN W G. Coal pyrolysis in a laboratory-scale two-stage reactor:Catalytic upgrading of pyrolytic vapors[J]. Chem Eng Technol, 2015,37(12):2135-2142.

    8. [8]

      ZHAO Hong-yu, LI Yu-huan, SONG Qiang, LÜ Jun-xin, SHU Yuan-feng, WANG Zi-min, YAN Jie, ZENG Ming, SHU Xin-qian. Effect of additive iron ore on pyrolysis characteristics of a low rank coal from Hami[J]. J Fuel Chem Technol, 2016,44(2):154-161. doi: 10.3969/j.issn.0253-2409.2016.02.004

    9. [9]

      FU Y, GUO Y H, ZHANG K X. Effect of three different catalysts (KCl, CaO and Fe2O3) on the reactivity and mechanism of low-rank coal pyrolysis[J]. Energy Fuels, 2016,30:2428-2433. doi: 10.1021/acs.energyfuels.5b02720

    10. [10]

      ZHU T Y, ZHANG S Y, HUANG J J, WANG Y. Effect of calcium oxide on pyrolysis of coal in a fluidized bed[J]. Fuel Process Technol, 2000,64(1):271-284.  

    11. [11]

      FENG J, XUE X Y, LI X H, LI W J, GUO X F, LIU K. Products analysis of Shendong long-flame coal hydropyrolysis with iron-based catalysts[J]. Fuel Process Technol, 2015,130:96-100. doi: 10.1016/j.fuproc.2014.09.035

    12. [12]

      HE L, HUI H L, LI S G, LI W G. Production of light aromatic hydrocarbons by catalytic cracking of coal pyrolysis vapors over natural iron ores[J]. Fuel, 2018,216:227-232. doi: 10.1016/j.fuel.2017.12.005

    13. [13]

      ÖZTASN A, YÜRÜM Y. Pyrolysis of Turkish Zonguldak bituminous coal. Part 1. Effect of mineral matter[J]. Fuel, 2000,79(10):1221-1227. doi: 10.1016/S0016-2361(99)00255-0

    14. [14]

      DING L, ZHOU Z J, GUO Q H, HUO W, YU G S. Catalytic effects of Na2CO3, additive on coal pyrolysis and gasification[J]. Fuel, 2015,142:134-144. doi: 10.1016/j.fuel.2014.11.010

    15. [15]

      LI F, CHANG L P, WEN P, XIE K C. Simulated distillation of coal tar[J]. Energy Sources, 2001,23(2):189-199. doi: 10.1080/00908310151092416

    16. [16]

      MIN Z H, YIMSIRI P, ASADULLAH M, ZHANG S, LI C Z. Catalytic reforming of tar during gasification. Part Ⅱ. Char as a catalyst or as a catalyst support for tar reforming[J]. Fuel, 2011,90(7):2545-2552. doi: 10.1016/j.fuel.2011.03.027

    17. [17]

      PORADA S. The influence of elevated pressure on the kinetics of evolution of selected gaseous products during coal pyrolysis[J]. Fuel, 2004,83(7):1071-1078.  

    18. [18]

      ZHAO Hong-yu, REN Shan-pu, JIA Jin-wei, FU Xing-min, LI Zi-jun, LIANG Xin-xing, YAN Jie, ZENG Ming, SHU Xin-qian. Effects of calcium and nickel ions by three different load methods on pyrolysis and gasification characteristics of lignite[J]. J China Coal Soc, 2015,40(7):1660-1669.  

    19. [19]

      ZENG X, WANG Y, YU J, WU S S, ZHONG M, XU S P, XU G W. Coal pyrolysis in a fluidized bed for adapting to a two-stage gasification process[J]. Energy Fuels, 2011,25(3):1092-1098. doi: 10.1021/ef101441j

    20. [20]

      ZENG Zhao-qiong. Reference Materials for Organic Chemistry[M]. Beijing:Higher Education Press, 1989.

    21. [21]

      ZHU Ting-yu, LIU Li-peng, WANG Yang, HUANG Jie-jie. Study on coal mild gasification with CaO catalyst[J]. J Fuel Chem Technol, 2000,28(1):36-39.  

    22. [22]

      WIKTORSSON L P, WANZL W. Kinetic parameters for coal pyrolysis at low and high heating rates-a comparison of data from different laboratory equipment[J]. Fuel, 2000,79(6):701-716. doi: 10.1016/S0016-2361(99)00138-6

    23. [23]

      WANG Gui-ru. Catalyst and Catalysis[M].4th ed. Dalian:Dalian University of Technology Press, 2015.

    24. [24]

      XU S Q, ZHOU Z J, XIONG J, YU G S, WANG F C. Effects of alkaline metal on coal gasification at pyrolysis and gasification phases[J]. Fuel, 2011,90(5):1723-1730. doi: 10.1016/j.fuel.2011.01.033

    25. [25]

      SHENG C D. Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity[J]. Fuel, 2007,86(15):2316-2324. doi: 10.1016/j.fuel.2007.01.029

    26. [26]

      SADEZKY A, MUCKENHUBER H, GROTHE H, NIESSNER R, POSCHL U. Raman microspectroscopy of soot and related carbonaceous materials:Spectral analysis and structural information[J]. Carbon, 2005,43(8):1731-1742. doi: 10.1016/j.carbon.2005.02.018

    27. [27]

      DANIEL M K, LI X J, JUNICHIRO H, LI C Z. Characterization of the structural features of char from the pyrolysis of cane trash using fourier Transform-Raman spectroscopy[J]. Energy Fuels, 2007,21(3):1816-1821. doi: 10.1021/ef070049r

    28. [28]

      OMAE I. Agostic bonds in cyclometalation[J]. J Organometallic Chem, 2011,96(6):1128-1145.  

    29. [29]

      QI Xue-jun, GUO Xin, LUO Zhong-kui, ZHENG Chu-guang. Effect of iron on the structure of shenfu brown coal char during pyrolysis[J]. J Eng Thermophysics, 2014,35(4):796-800.  

    30. [30]

      WU Jian-jun, ZHOU Guo-li, GAO Zhi-yuan, QIAO Jun, ZU Jing-ru. The X-ray diffraction analysis of carbon micro-crystal structure of the foundry formed coke prepared by semi-coke[J]. J China Coal Soc, 2009,34(12):1693-1696. doi: 10.3321/j.issn:0253-9993.2009.12.020

    31. [31]

      MUEAKAMI K, SHIRATO H, OZAKI J I, NISHIYAMA Y. Effects of metal ions on the thermal decomposition of brown coal[J]. Fuel Process Technol, 1996,46(3):183-194. doi: 10.1016/0378-3820(95)00056-9

  • 加载中
    1. [1]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    2. [2]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    3. [3]

      Haiyu Zhu Zhuoqun Wen Wen Xiong Xingzhan Wei Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078

    4. [4]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    5. [5]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

    6. [6]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    10. [10]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    11. [11]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    12. [12]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    13. [13]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    14. [14]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    15. [15]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    16. [16]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    19. [19]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    20. [20]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

Metrics
  • PDF Downloads(8)
  • Abstract views(614)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return