Citation: YU Jun-qin, WEI Jun-tao, DING Lu, GUO Qing-hua, YU Guang-suo. Effect of biomass ash addition on gasification characteristics of anthracite char[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(10): 1161-1167. shu

Effect of biomass ash addition on gasification characteristics of anthracite char

  • Corresponding author: YU Guang-suo, gsyu@ecust.edu.cn
  • Received Date: 26 June 2018
    Revised Date: 20 August 2018

    Fund Project: The project was supported by National Key R&D Program of China 2017YFB0602601The project was supported by National Key R&D Program of China (2017YFB0602601)

Figures(4)

  • Zunyi anthracite was used as the raw material of gasification and rice straw ash and cotton stalk ash were optioned as biomass ash additives. Char-CO2 isothermal gasification experiments were conducted using TGA to investigate the effect of biomass ash addition on coal char gasification characteristics. Furthermore, the relationship between char structure evolution during gasification and char gasification reactivity was investigated. The results indicate that the biomass ash addition has a promotion effect on coal char gasification, which is well related to the increase in active AAEM content and the decrease in the order degree of carbon structure of chars by the addition of biomass ash. However, the promotion effect of biomass ash additives on coal char gasification is weakened with increasing gasification temperature, mainly due to that the positive effect of biomass ash additive on the increase of active AAEM content in char and the inhibition effect of biomass ash additive on carbon structure order degree of coal char become weaker at higher gasification temperature. Additionally, it is found that cotton stalk ash has a more significant positive effect on coal char gasification than rice straw ash because cotton stalk ash has a more obvious effect on the increase in active AAEM content and the decrease in the carbon structure graphitization degree of coal char.
  • 加载中
    1. [1]

      YANG Jing-biao, CAI Ning-sheng, ZHANG Yan-wen. Effect of catalyst loadings on the gasification reactivity of a lignite char with steam[J]. J Fuel Chem Technol, 2008,36(1):15-21. doi: 10.3969/j.issn.0253-2409.2008.01.004

    2. [2]

      LI Shao-hua, WANG Yan-peng, CHE De-yong, LIU Da-ren, ZHANG Zhuo-wen. Experimental study on catalytic co-gasification characteristics of pine sawdust and lignite[J]. Therm Power Gener, 2015,44(1):44-48. doi: 10.3969/j.issn.1002-3364.2015.01.044

    3. [3]

      LIAN Ming-lei, XIE Jun, WU Wen-fang, GE Yuan, HUO Xia, BAI Zhi-ling. Process study on microwave-assisted entrained flow gasification[J]. Coal Sci Technol, 2018,46(3):218-223.  

    4. [4]

      RIZKIANA J, GUAN G Q, WIDAYATNO W B, HAO X G, LI X M, HUANG W, ABDULA A. Promoting effect of vrious biomass ashes on the steam gasification of low-rank coal[J]. Appl Energy, 2014,133:282-288. doi: 10.1016/j.apenergy.2014.07.091

    5. [5]

      ASSILEV S V, BAXTER D, ANDERSEN L K, VASSLIEVA C G. An overview of the composition and application of biomass ash[J]. Fuel, 2013,105:19-39. doi: 10.1016/j.fuel.2012.10.001

    6. [6]

      ZHU Zhi-hui, LI Bin-lang. Effect of biomass ash on char gasification under constant temperature[J]. Electr Power Sci Eng, 2017,33(8):67-71. doi: 10.3969/j.ISSN.1672-0792.2017.08.011

    7. [7]

      GUO Chen-chen, DONG Wei-guo. New research prograss on the alkali metal catalytic gasification of coal[J]. Coal Qual Technol, 2016,3:38-42.  

    8. [8]

      NANOU P, MURILLO H G, SWAAIJ W, ROSSUM G V, KERSTEN R A. Intrinsic reactivity of biomass-derived char under steam gasification conditions-potential of wood ash as catalyst[J]. Chem Eng J, 2013,217:289-299. doi: 10.1016/j.cej.2012.12.012

    9. [9]

      QI Xiao-bin, SONG Guo-liang, SONG Wei-jian, LÜ Qing-gang. Alkali metal migration and slagging characteristic during Zhundong high-alkali coal gasification[J]. J Fuel Chem Technol, 2015,43(8):906-913. doi: 10.3969/j.issn.0253-2409.2015.08.002 

    10. [10]

      TIBERIU P, FAN M H, MORRIS D, SLIMANE R B, BELL D A, TOWLER B F. Catalytic gasification of a powder river basin coal[J]. Fuel, 2013,103:161-170. doi: 10.1016/j.fuel.2012.08.049

    11. [11]

      HUANG S, WU S, WU Y, GAO J. The physicochemical properties and catalytic characteristics of different biomass ashes[J]. Energy Source Part A, 2014,36:402-410. doi: 10.1080/15567036.2012.722746

    12. [12]

      ZHANG Z Y, PANG S S, LEVI T. Influence of AAEM species in coal and biomass on steam co-gasification of chars of blended coal and biomass[J]. Renew Energy, 2017,101:356-363. doi: 10.1016/j.renene.2016.08.070

    13. [13]

      HUO W, ZHOU Z J, WANG F C, YU G S. Mechanism analysis and experimental verification of pore diffusion on coke and coal char gasification with CO2[J]. Chem Eng J, 2014,244:227-233. doi: 10.1016/j.cej.2014.01.069

    14. [14]

      POPA T, FAN M, ARGYLE M D, SLIMANE R B, BELL D A, TOWLER B F. Catalytic gasification of a powder river basin coal[J]. Fuel Process Technol, 2013,103:161-170.  

    15. [15]

      LIU Yang, YANG Xin-fang, LEI Fu-lin, XIAO Yun-han. Steam gasification characteristics of Zhundong coal with additive CaO at medium temperature[J]. J Fuel Chem Technol, 2018,46(3):265-272. doi: 10.3969/j.issn.0253-2409.2018.03.002 

    16. [16]

      WEI J T, GUO Q H, HE Q, DING L, YOSHIKAWA K, YU G S. Co-gasification of bituminous coal and hydrochar derived from municipal solid waste:Reactivity and synergy[J]. Bioresour Technol, 2017,239:482-489. doi: 10.1016/j.biortech.2017.05.014

    17. [17]

      MITSUOKA K, HAYASHI S, AMANO H, KAYAHARA K, SASAOAKA E, UDDIN M A. Gasification of woody biomass char with CO2:The catalytic effects of K and Ca species on char gasification reactivity[J]. Fuel Process Technol, 2011,92:26-31. doi: 10.1016/j.fuproc.2010.08.015

    18. [18]

      LI Y, YANG H, HU J, WANG X, CHEN H. Effect of catalysts on the reactivity and structure evolution of char in petroleum coke steam gasification[J]. Fuel, 2014,117:1174-1180. doi: 10.1016/j.fuel.2013.08.066

    19. [19]

      TAY H L, KAJITANI S, WANG S, LI C. A preliminary Raman spectroscopic perspective for the roles of catalysts during char gasification[J]. Fuel, 2014,121:165-172. doi: 10.1016/j.fuel.2013.12.030

    20. [20]

      ZHU H L, YU G S, GUO Q H, WANG X J. In situ Raman Spectroscopy study on catalytic pyrolysis of a bituminous coal[J]. Energy Fuels, 2017,31:5817-5827. doi: 10.1021/acs.energyfuels.6b03042

    21. [21]

      SOLOMON P R, CARANGELO R M. FTIR analysis of coal. 1. Techniques and determination of hydroxyl concentrations[J]. Fuel, 1982,61(7):663-669. doi: 10.1016/0016-2361(82)90014-X

  • 加载中
    1. [1]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    2. [2]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    3. [3]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    4. [4]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    5. [5]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    6. [6]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    7. [7]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    8. [8]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    9. [9]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    10. [10]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    11. [11]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    12. [12]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    13. [13]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    14. [14]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    15. [15]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    16. [16]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

    19. [19]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    20. [20]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

Metrics
  • PDF Downloads(3)
  • Abstract views(841)
  • HTML views(110)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return