Citation: YANG Jian-guo, YANG Wei-ying, ZHENG Fang-dong, ZHAO Hong. Effects of NH3 and SO3 on the generation of ammonium bisulfate and ammonium sulfate[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(1): 92-98. shu

Effects of NH3 and SO3 on the generation of ammonium bisulfate and ammonium sulfate

  • Corresponding author: ZHAO Hong, zhaohong@zju.edu.com
  • Received Date: 1 August 2017
    Revised Date: 19 October 2017

    Fund Project: the Zhejiang Provincial Natural Science Foundation of China LY15E060002The project was supported by the Zhejiang Provincial Natural Science Foundation of China(LY15E060002)

Figures(8)

  • In order to study the influence of reactant concentration on the formation of ammonium bisulfate and ammonium sulfate, a simulating flue gas system with a more accurate composition of SO3 was established. The starting temperature of ammonium bisulfate is about 230-270℃ and the peak temperature is about 180-240℃ under the experimental condition. The starting temperature and peak temperature of ammonium sulfate are about 40℃ lower than that of ammonium bisulfate. The formation of ammonium bisulfate is obviously higher than that of ammonium sulfate. With different concentration and molar ratio of NH3 and SO3, the formation rate of ammonium bisulfate is about 64%-90%, about 6-10 times of that of ammonium sulfate with about 6%-15% at 120℃. The increase of reactant concentration can promote the formation of both ammonium bisulfate and ammonium sulfate. And SO3 is more conducive to the formation of ammonium bisulfate than NH3. Further analysis shows that the variation curve of the generation fraction of ammonium bisulfate and ammonium sulfate with temperature presents a single peak. As the reactant concentration increases, the temperature range at which the peak is located increases gradually.
  • 加载中
    1. [1]

      GB13223-2011, Emission standard of air pollutants for thermal power plants[S].

    2. [2]

    3. [3]

      CHEN Jin-sheng. Flue Gas Denitrification Technology in Power Plant-Selective Catalytic Reduction[M]. Beijing:China Electric Power Press, 2008.

    4. [4]

      LI Jun-hua, YANG Xun, CHANG Hua-zhen. Development and Application of Key Technologies for Catalytic Denitrification of Flue Gas[M]. Beijing:Science Press, 2015.

    5. [5]

      MA Shuang-chen, JIN Xin, SUN Yun-xue, CUI Ji-wei. The formation mechanism of ammonium bisulfate in SCR flue gas denitrification progress and control thereof[J]. Therm Power Gener, 2010,39(8):12-17.  

    6. [6]

      WILBURN R T, WRIGHT T L. SCR ammonia slip distribution in coal plant effluents and dependence upon SO3[J]. Powerplant Chem, 2004,6(5):295-304.

    7. [7]

      CAI Ming-kun. The problem and solution in air preheater design for boilers with de NOx equipments[J]. Bolier Technol, 2005,36(4):8-12, 77.  

    8. [8]

      FARTHING W E, WALSH P M. Identification of (and responses to) potential effects of SCR and wet scrubbers on submicron particulate emissions and plum characteristics[R]. Alabama: Southern Research Institute, 2004.

    9. [9]

      LIANG Deng-ke. Experimental research on the effects to flue ash particles characteristics of NH4HSO4 generating during the denitrification process[D]. Jinan: Shandong University, 2014. 

    10. [10]

      LU Jian-wei, CAO Zhi-yong, LI Hui. Problems analysis in construction and operation of coal-fired units flue gas denitrification facilities[J]. Electric Power Technol and Environ Prot, 2013,29(5):4-7.  

    11. [11]

      LUO Min, ZHAO Ling-ling, LI Si-yu. Numerical simulation of ash deposition with adhesion of NH4HSO4 in an air preheater[J]. Chin J Power Eng, 2016,36(11):883-888. doi: 10.3969/j.issn.1674-7607.2016.11.005

    12. [12]

      Schreifels J J, WANG S X, HAO J M. Design and operational considerations for selective catalytic reduction technologies at coal-fired boilers[J]. Front Energy, 2012,06(1):98-105. doi: 10.1007/s11708-012-0171-4

    13. [13]

      ZHAO Zong-rang. Design optimization of SCR system for coal-fired boilers[J]. Electric Power, 2005,38(11):69-74.  

    14. [14]

      ZHAO Y, HU J, HUA L. Ammonia storage and slip in a urea selective catalytic reduction catalyst under steady and transient conditions[J]. Ind Eng Chem Res, 2011,50(21):11863-11871. doi: 10.1021/ie201045w

    15. [15]

      LEI Z G, WEN C P, CHEN B H. Optimization of internals for selective catalytic reduction (SCR) for no removal[J]. Environ Sci Technol, 2011,45(8):3437-3444. doi: 10.1021/es104156j

    16. [16]

      ZHU Chong-bing, JIN Bao-sheng, LI Feng, ZHAI Jun-xia. Effect of SO2 oxidation on SCR-DeNOx[J]. Bolier Technol, 2008,39(3):68-72.  

    17. [17]

      WANG Hang-zhou. The influence of SCR on denitrification efficiency and SO2 conversion[J]. Electric Power Sci Eng, 2008,24(5):17-21.  

    18. [18]

      BURKE J M, JOHNSON K L. Ammonium sulfate and bisulfate formation in air preheaters[J]. Bmj British Med J, 1982,329(7463)446.  

    19. [19]

      Ando J. NOx abatement for stationary sources in Japan[R]. USEPA, 1976.

    20. [20]

      CHOTHANI C, MOREY R. Ammonium bisulfate (ABS) measurement for SCR NOx control and air heater protection[C]//Baltimore, MD: 2008.

    21. [21]

      MENASHA J, DUNN-RANKIN D, MUZIO L, STALLINGS J. Ammonium bisulfate formation temperature in a bench-scale single-channel air preheater[J]. Fuel, 2011,90(7):2445-2453. doi: 10.1016/j.fuel.2011.03.006

    22. [22]

      MATSUDA S, KAMO T, KATO A. Deposition of ammonium bisulfate in the selective catalytic reduction of nitrogen oxides with ammonia[J]. Ind Eng Chem Prod Res Dev, 1982,21(1):1888-1900.  

    23. [23]

      Sarunac N. Improving the performance of boiler auxiliaries[J]. Coal Power, 2011(2):1-35.  

    24. [24]

      MA Shuang-chen, DENG Yue, WU Wen-long, ZHANG Li-nan, MA Jing-xiang, ZHANG Xiao-ni. Experimental research on ABS formation characteristics in SCR denitrification process[J]. Chin J Power Eng, 2016,36(2):143-150.  

    25. [25]

      LIU Shao-wu. Sulfuric Acid Workbook[M]. Nanjing:Southeast University Press, 2001.

    26. [26]

      CHEN Xiao-lu, ZHAO Qin-xin, BAO Ying-qun, WANG Yun-gang, LI Yu-xin. Experimental research on SO3 removal[J]. Chin J Power Eng, 2014,34(12):966-971.  

    27. [27]

      CHANG Jing-cai, DONG Yong, WANG Zhi-qiang, YAN Jun, CHEN Peng, MA Chun-yuan. Simulation experiment of SO3 transfer and absorption characteristics in coal fired flue gas[J]. J China Coal Soc, 2010,35(10):1717-1720.  

    28. [28]

      ZHANG Ji-biao, HAO Wei, ZHAO Zhi-jun, HU Xing-sheng, YIN Guo-qiang. Theoretical and practical research on mechanism of low-temperature corrosion caused by boiler flue gas[J]. Chin J Power Eng, 2011,31(10):730-733, 738.  

    29. [29]

      XIANG Bai-xiang, ZHAO Chong-zhen, DING Yan-jun, MA Run-tian, LU Jun-fu. Measurement and prediction model for the acid dew point in flue gases[J]. J Tsinghua Univ (Sci Technol), 2015,55(10):1117-1124.  

    30. [30]

      LI Jie, JIA Bin, QIANG Ning. Thorin colorimetric method for sulfur trioxide determination from stationary sources[J]. Environ Pollut Ctrl, 2008,30(10):63-66. doi: 10.3969/j.issn.1001-3865.2008.10.018

    31. [31]

      GBT18204. 25-2000, Method for determination of ammonia in the air of public places[S].

  • 加载中
    1. [1]

      Wenqing DengFanfeng DengTing ZhangJunjie LinLiang ZhaoGang LiYi PanJiebin Yang . Continuous measurement of reactive ammonia in hydrogen fuel by online dilution module coupled with Fourier transform infrared spectrometer. Chinese Chemical Letters, 2025, 36(3): 110085-. doi: 10.1016/j.cclet.2024.110085

    2. [2]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    3. [3]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

    4. [4]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

    5. [5]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    6. [6]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    7. [7]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    8. [8]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    9. [9]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    10. [10]

      Weigang Zhu Yun Tian Zhicheng Zhang Hongling Gao . Reform Exploration of Student Performance Assessment in Inorganic Chemistry Experimental Courses. University Chemistry, 2024, 39(10): 203-209. doi: 10.12461/PKU.DXHX202404114

    11. [11]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    12. [12]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    13. [13]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    14. [14]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    15. [15]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    16. [16]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    17. [17]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    18. [18]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    19. [19]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    20. [20]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

Metrics
  • PDF Downloads(132)
  • Abstract views(9622)
  • HTML views(3039)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return