Citation: Nian Yujiao, Kong Weijun, Zhao Xue, Yang Shihai, Yang Meihua. Application Progress of Aptamers in Targeted Specific Detection[J]. Chemistry, ;2017, 80(9): 819-828. shu

Application Progress of Aptamers in Targeted Specific Detection

Figures(4)

  • Aptamers are a kind of oligonucleotide sequences (DNA or RNA) obtained by SELEX technique in vitro, which can combine with the targets by folding into a certain space structure for specific adsorption. The function of aptamers is similar to that of antibodies, but they have incomparable advantages, such as a wide range of targets, good specificity and affinity, screening in vitro without animals, easy labeling and modification, good stability, no toxicity and easy to prepare. In recent years, aptamers have been widely used in the fields of analytical chemistry, biochemistry, food safety, clinical diagnosis and especially multi-components detection. In this paper, the applications of aptamers in rapid detection of metal ions, antibiotics, pesticide residues, mycotoxins, proteins, microorganisms and cells were reviewed, the possible limitations and the main problems were discussed, as well as the application trends were prospected in order to provide some supports and references to expand the application of aptamers and related research.
  • 加载中
    1. [1]

       

    2. [2]

      J A Cruz-Aguado, G Penner. J. Agric. Food Chem., 2008, 56(22):10456~10461. 

    3. [3]

      C Tuerk, L Gold. Science, 1990, 249(4968):505~510. 

    4. [4]

      A D Ellington, J W Szostak. Nature, 1990, 346(6287):818~822. 

    5. [5]

      F Li, H Q Zhang, Z X Wang et al. Anal. Chem., 2014, 87(1):274~292.

    6. [6]

      H Q Zhang, F Li, B Dever et al. Chem. Rev., 2012, 113(4):2812~2841.

    7. [7]

    8. [8]

      K H Leung, B Y He, C Yang et al. ACS Appl. Mater. Interf., 2015, 7(43):24046~24052. 

    9. [9]

      Z S Qian, X Y Shan, L J Chai et al. Biosens. Bioelectron., 2015, 68:225~231. 

    10. [10]

      S N Hashim, A Tsuchiya, N Kamiya et al. Chem. Lett., 2015, 44(12):1670~1672. 

    11. [11]

      A Yasmeen, F Du, Y Zhao et al. ACS Chem. Biol., 2016, 11(7):1945~1951. 

    12. [12]

      Y B Miao, N Gan, H X Ren et al. Talanta, 2016, 147:296~301. 

    13. [13]

      Y Wang, N Gan, T H Li et al. Anal. Methods, 2016, 8(15):3006~3013. 

    14. [14]

      J K Xue, J Liu, Wang C S et al. Anal. Methods, 2016, 8(9):1981~1988. 

    15. [15]

      Y N Zheng, Y L Yuan, Y Q Chai et al. Biosens. Bioelectron., 2015, 66:585~589. 

    16. [16]

      L Cui, J Wu, H X Ju. Biosens. Bioelectron., 2016, 79:861~865. 

    17. [17]

      S J Wu, H Zhang, Z Shi et al. Food Control, 2015, 50:597~604. 

    18. [18]

    19. [19]

       

    20. [20]

      H Kurt, M Yüce, B Hussain et al. Biosens. Bioelectron., 2016, 81:280~286. 

    21. [21]

      Y B Miao, H X Ren, N Gan et al. Anal. Chim. Acta, 2016, 929:49~55. 

    22. [22]

      T T Tang, J J Deng, M Zhang et al. Talanta, 2016, 146:55~61. 

    23. [23]

      H J Shi, G H Zhao, M C Liu et al. J. Hazard. Mater., 2013, 260:754~761. 

    24. [24]

      Y Tian, Y Wang, Z Sheng et al. Anal. Biochem., 2016, 513:87~92. 

    25. [25]

      W H Bai, C Zhu, J C Liu et al. Environ. Toxicol. Chem., 2015, 34(10):2244~2249 

    26. [26]

      B X Lin, Y Yu, R Y Li et al. Sens. Actuat. B, 2016, 229:100~109. 

    27. [27]

      X Liu, Y Li, J Liang et al. Talanta, 2016, 160:99~105. 

    28. [28]

      Y Y Qi, F R Xiu, M F Zheng et al. Biosens. Bioelectron., 2016, 83:243~249. 

    29. [29]

      P J Wang, Y Wan, A Ali et al. Sci. China:Chem., 2016, 59(2):237~242. 

    30. [30]

      R Bala, R K Sharma, N Wangoo. Anal. Bioanal. Chem., 2016, 408(1):333~338. 

    31. [31]

      L D Wu, P P Qi, X C Fu et al. J. Electroanal. Chem., 2016, 771:45~49. 

    32. [32]

      R Bala, M Kumar, K Bansal et al. Biosens. Bioelectron., 2016, 85:445~449. 

    33. [33]

      R Chauhan, J Singh, T Sachdev et al. Biosens. Bioelectron., 2016, 81:532~545. 

    34. [34]

      W L Zhou, W J Kong, X W Dou et al. J. Chromatogr. B, 2016, 1022:102~108. 

    35. [35]

      X H Yang, Y C Hu, W J Kong et al. J. Sep. Sci., 2014, 37(21):3052~3059. 

    36. [36]

      L Lv, C B Cui, C Y Liang et al. Food Control, 2016, 60:296~301. 

    37. [37]

      X F Chu, X W Dou, R Z Liang et al. Nanoscale, 2016, 8(7):4127~4133. 

    38. [38]

      L Chen, F Wen, M Li et al. Food Chem., 2017, 215:377~382. 

    39. [39]

      A Erdem, G Congur. Talanta, 2014, 128:428~433. 

    40. [40]

      S Scarano, E Dausse, F Crispo et al. Anal. Chim. Acta, 2015, 897:1~9. 

    41. [41]

      C C Chang, C Y Chen, T L Chuang et al. Biosens. Bioelectron., 2016, 78:200~205. 

    42. [42]

      Y T Tseng, C H Wang, C P Chang et al. Biosens. Bioelectron., 2016, 82:105~111. 

    43. [43]

      S F Yuan, N R Zhang, K L Singh et al. Antimicrob. Agents Chemother., 2015, 59(7):4082~4093. 

    44. [44]

      W K Li, X R Feng, X Yan et al. Nucleic Acid Ther., 2016,26(3):166~172. 

    45. [45]

    46. [46]

      C L A Hamula, H Peng, Z Wang et al. J. Mol. Evol., 2015, 81(5~6):194~209. 

    47. [47]

      S M Yoo, D K Kim, S Y Lee. Talanta, 2015, 132:112~117. 

    48. [48]

      Q Y Wang, Y J Kang. Nanoscale Res. Lett., 2016, 11(1):1~9. 

    49. [49]

      D P Sun, J Lu, Z G Chen et al. Anal. Chim. Acta, 2015, 885:166~173. 

    50. [50]

      N Zhang, T Bing, L Y Shen et al. Angew. Chem. Int. Ed., 2016, 55(12):3914~3918. 

    51. [51]

      C L Esposito, S Catuogno, V de Franciscis. SiRNA Delivery Methods:Methods and Protocols, 2016, 1364:197~208. 

    52. [52]

      J F Callan, R C Mulrooney, S Kamila. J. Fluoresc., 2008, 18(6):1157~1161. 

    53. [53]

      Y L Wei, Y X Chen, H H Li et al. Biosens. Bioelectron., 2015, 63:311~316. 

    54. [54]

      Q Zhang, H B Qiu, F Q Tang et al. Chem. Lett., 2016, 45(3):289~290. 

    55. [55]

      H Z Qiu, Z E Huang, M Chen et al. Microchim. Acta, 2015, 182(15~16):2387~2393. 

    56. [56]

      F Chen, C Q Cai, X M Chen et al. Sci. Rep., 2016, 6:18814. 

    57. [57]

      X X He, Z X Li, X K Jia et al. Talanta, 2013, 111:105~110. 

    58. [58]

      Y Huo, L Qi, X J Lv et al. Biosens. Bioelectron., 2016, 78:315~320. 

    59. [59]

      Y F He, L F Liao, C H Xu et al. Microchim. Acta, 2015, 182(1~2):419~426. 

    60. [60]

    61. [61]

      Y L Wei, Y X Chen, H H Li et al. Biosens. Bioelectron., 2015, 63:311~316. 

    62. [62]

      B Y Fang, M H Yao, C Y Wang et al. Colloid. Surf., B, 2016, 140:233~238. 

    63. [63]

      M Roushani, F Shahdost-Fard. Anal. Chim. Acta, 2015, 853:214~221. 

    64. [64]

      Y F Tang, F Long, C M Gu et al. Anal. Chim. Acta, 2016, 933:182~188. 

    65. [65]

      Z H Chen, Y Tan, K F Xu et al. Biosens. Bioelectron., 2016, 75:8~14. 

    66. [66]

      G Bozokalfa, H Akbulut, B Demir et al. Anal. Chem., 2016, 88(7):4161~4167. 

    67. [67]

      Z B Chen, M H Lu. Talanta, 2016, 160:444~448. 

    68. [68]

      S B Zhang, L P Wang, M L Liu et al. Anal. Methods, 2016, 8(18):3740~3746. 

    69. [69]

      Y L Zhang, Z Y Sun, L N Tang et al. Microchim. Acta, 2016, 183(10):2791~2797. 

    70. [70]

      F Haddache, A Le Goff, N Spinelli et al. Electrochim. Acta, 2016, 219:82~87. 

    71. [71]

      J M Wang, J Song, X Y Wang et al. Talanta, 2016, 161:437~442. 

    72. [72]

      A S Emrani, N M Danesh, M Ramezani et al. Biosens. Bioelectron., 2016, 79:288~293. 

    73. [73]

      D L Ma, M Wang, B He et al. ACS Appl. Mater. Interf., 2015, 7(34):19060~19067. 

    74. [74]

      M Roushani, F Shahdost-fard. Microchim. Acta, 2016, 183(1):185~193. 

    75. [75]

      F Beigloo, A Noori, M A Mehrgardi et al. J. Iran. Chem. Soc., 2016, 13(4):659~669. 

    76. [76]

      H Hasegawa, N Savory, K Abe et al. Molecules, 2016, 21(4):421. 

    77. [77]

      X L Tang, Y Hua, Q Guan et al. Eur. J. Clin. Microbiol. Infect. Dis., 2016, 35(4):587~595. 

    78. [78]

      G Mahlknecht, M Sela, Y Yarden. Gene Therapy of Solid Cancers:Methods Protoc., 2015:3~15.

    79. [79]

      I C Elle, K K Karlsen, M G Terp et al. Mol. BioSyst., 2015, 11(5):1260~1270. 

    80. [80]

      E Ouellet, J H Foley, E M Conway et al. Biotechnol. Bioeng., 2015, 112(8):1506~1522. 

    81. [81]

       

    82. [82]

       

    83. [83]

      H P Dwivedi, R D Smiley, L A Jaykus. Appl. Microbiol. Biotechnol., 2010, 87:2323~2334. 

    84. [84]

      X J Xing, X G Liu, Y Zhou et al. RSC Adv., 2016, 6(14):11815~11821. 

    85. [85]

      D Q Fan, C T Wu, K Wang et al. Chem. Commun., 2016, 52(2):406~409. 

    86. [86]

      E Mondragón, L J Maher Ⅲ. Nucl. Acid Ther., 2016, 26(1):29~43. 

    87. [87]

       

  • 加载中
    1. [1]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    2. [2]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    3. [3]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    4. [4]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    5. [5]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    6. [6]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    7. [7]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    8. [8]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    9. [9]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    10. [10]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

    11. [11]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    12. [12]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    13. [13]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    14. [14]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    15. [15]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    16. [16]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    17. [17]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    18. [18]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    19. [19]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    20. [20]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

Metrics
  • PDF Downloads(70)
  • Abstract views(8352)
  • HTML views(2490)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return