Citation: Zhongliang Xu, Xia Xiao, Zhen Zhao, Bing Sun. Advances in Preparation and Catalytic Applications of SAPO-34 Zeolites[J]. Chemistry, ;2021, 84(2): 129-138. shu

Advances in Preparation and Catalytic Applications of SAPO-34 Zeolites

  • Corresponding author: Xia Xiao, xiaoxiacup@126.com
  • Received Date: 23 July 2020
    Accepted Date: 24 August 2020

Figures(5)

  • The preparation methods and synthesis factors of SAPO-34 zeolites are important factors affecting its physicochemical properties such as crystal morphology, grain size, acidity and pore structure, which are closely related to the catalytic performance of SAPO-34 zeolites. In this paper, the advantages and disadvantages of conventional hydrothermal synthesis, microwave-assisted synthesis, dry gel conversion synthesis and solvent-free synthesis were compared and analyzed. The influences of preparation parameters such as template agent, Si/Al ratio, H2O/Al2O3, silicon source, aluminum source and metal modification on the physicochemical properties and catalytic performance of SAPO-34 zeolites were emphatically introduced. Its catalytic applications such as methanol to light olefins, ammonia selective catalytic reduction of NOx and hydrocarbon catalytic cracking to light olefins were briefly summarized. It provides some reference significance and research ideas for the design and preparation of new and efficient SAPO-34 zeolites.
  • 加载中
    1. [1]

      Wragg D S, Akporiaye D, Fjellvvåg H. J. Catal., 2011, 279(2): 397~402.

    2. [2]

      lvaro-Muñoz T, Márquez-Álvarez C, Sastre E. Catal. Today, 2013, 213: 219~225.

    3. [3]

    4. [4]

    5. [5]

      Baba T, Koyama T, Motokura K, et al. J. Phys. Chem. C, 2012, 116(8): 5182~5196.

    6. [6]

      Yu L M, Zhong Q, Zhang S L. Micropor. Mesopor. Mater., 2016, 234: 303~309.

    7. [7]

      Li J P, Yang J F, Shang H, et al. Chin. J. Chem. Eng., 2019, 27(5): 1044~1049.

    8. [8]

      Zheng J J, Wang G S, Pan M, et al. Micropor. Mesopor. Mater., 2015, 206: 114~120.

    9. [9]

    10. [10]

      Lee Y J, Baek S C, Jun K W. Appl. Catal. A, 2007, 329: 130~136.

    11. [11]

      Dargahi M, Kazemian H, Soltanieh M, et al. Particuology, 2011, 9: 452~457.

    12. [12]

      lvaro-Muñoz T, Márquez-Álvarez C, Sastre E. Appl. Catal. A, 2014, 472: 72~79.

    13. [13]

      Wang P, Yang D, Hu J, et al. Catal. Today, 2013, 212: 62.e1~62.e8.

    14. [14]

      Shalmani F M, Halladj R, Askari S. Powder Technol., 2012, 221: 395~402.

    15. [15]

      lvaro-Muñoz T, Márquez-Álvarez C, Sastre E. Catal. Sci. Technol., 2014, 12: 4330~4339.

    16. [16]

      Askari S, Sedighi Z, Halladj R. Micropor. Mesopor. Mater., 2014, 197: 229~236.

    17. [17]

      Zheng J, Jin D, Liu Z, et al. Ind. Eng. Chem. Res, 2017, 57: 548~558.

    18. [18]

      Ren L, Wu Q, Yang C, et al. J. Am. Chem. Soc., 2012, 134(37): 15173~15176.

    19. [19]

      Jin Y Y, Sun Q, Xiao F S, et al. Angew. Chem. Int. Ed., 2013, 125(35): 9342~9345.

    20. [20]

      lvaro-Muñoz T, Márquez-Álvarez C, Sastre E. Catal. Today, 2012, 179(1): 27~34.

    21. [21]

      Vomscheid R, Briend M, Peltre M J, et al. J. Phys. Chem., 1994, 98(38): 9614~9618.

    22. [22]

      Liu G Y, Tian P, Liu Z M, et al. Chin. J. Catal., 2012, 33(1): 174~182.

    23. [23]

      Ye L, Cao F, Ying W, et al. J. Porous. Mater, 2011, 18(2): 225~232.

    24. [24]

    25. [25]

      Schmidt F, Kaskel S, Paasch S, et al. Micropor. Mesopor. Mater., 2012, 164: 214~221.

    26. [26]

      Towfighi J, Bahrami H, Sahebdelfar S, et al. J. Anal. Appl. Pyrol., 2016, 121: 11~23.

    27. [27]

      Sun Q M, Wang N, Yu J H, et al. Chem. Commun., 2014, 50(49): 6502~6505.

    28. [28]

      Barthomeuf D. Zeolites, 1994, 14(6): 394~401.

    29. [29]

      Ashtekar S, Chilukuri S V V, Chakrabarty D K. J. Phys. Chem., 1994, 98(18): 4878~4883.

    30. [30]

      Tan J, Liu Z M, Bao X H, et al. Micropor. Mesopor. Mater., 2002, 53(1): 97~108.

    31. [31]

      Xu L, Du A P, Liu Z M, et al. Micropor. Mesopor. Mater., 2008, 115(3): 332~337.

    32. [32]

      Lin S, Li J Y, Yu J H, et al. Topics Catal., 2010, 53: 1304~1310.

    33. [33]

      Sedighi M, Towfighi J, Mohamadalizadeh A. Powder Technol., 2014, 259: 81~86.

    34. [34]

      Izadbakhsh A, Farhadi F, Khorasheh F, et al. Micropor. Mesopor. Mater., 2009, 126(1-2): 1~7.

    35. [35]

      Li M, Wang Y H, Wei W, et al. Appl. Catal. A, 2017, 531: 203~211.

    36. [36]

      Zhu J, Cui Y, Wei F, et al. Chem. Commun., 2009, 45(22): 3282~3284.

    37. [37]

      Wang T Z, Lu X C, Yan Y. Micropor. Mesopor. Mater., 2013, 168: 155~163.

    38. [38]

      Salmasi M, Fatemi S, Najafabadi A T. J. Ind. Eng. Chem., 2011, 17(4): 755~761.

    39. [39]

      Aghaei E, Haghighi M, Pazhohniya Z, et al. Micropor. Mesopor. Mater., 2016, 226: 331~343.

    40. [40]

      Li J Z, Wei Y X, Liu Z M, et al. Catal. Today, 2011, 171: 221~228.

    41. [41]

      Gao B B, Yang M, Liu Z M, et al. Catal. Sci. Technol., 2016, 6(20): 7569~7578.

    42. [42]

      Jin W L, Wang B J, Shen B J, et al. Ind. Eng. Chem. Res., 2018, 57(12): 4231~4236.

    43. [43]

      Yu M L, Yang C G, Chen X Q, et al. Sustain. Energ. Fuels, 2019, 3(11): 3101~3108.

    44. [44]

      Chen J Q, Bozzano A, Glover B, et al. Catal. Today, 2005, 106(1-4): 103~107.

    45. [45]

    46. [46]

      Tian P, Wei Y X, Liu Z M, et al. ACS Catal., 2015, 5(3): 1922~1938.

    47. [47]

    48. [48]

      Liu Z M, Wu X Q, Xu S T, et al. ACS Catal., 2018, 8: 7356~7361.

    49. [49]

      Liu Z M, Wei Y X, Chen J R, et al. ACS Catal., 2015, 5(2): 661~665.

    50. [50]

      Wang C M, Wang Y D, Xie Z K, et al. J. Phys. Chem. C, 2009, 113(11): 4584~4591.

    51. [51]

      Wang C M, Wang Y D, Liu H X, et al. Micropor. Mesopor. Mater., 2012, 158: 264~271.

    52. [52]

      Chen Z, Fan C, Li T, et al. Appl. Surf. Sci., 2018, 448: 671~680.

    53. [53]

      Hammershøi P S, Falsig H, Jensen A D, et al. Appl. Catal. B, 2018, 236: 377~383.

    54. [54]

      Leistner K, Olsson L. Appl. Catal. B, 2015, 165: 192~199.

    55. [55]

      Xiang X, Wu P F, Liu Z M, et al. Chin. J. Catal., 2017, 38(5): 918~927.

    56. [56]

      Epelde E, Bilbao J, Castaño P, et al. Appl. Catal. A, 2017, 547: 176~182.

    57. [57]

      Epelde E, Bilbao J, Castaño P, et al. Micropor. Mesopor. Mater., 2014, 195: 284~293.

  • 加载中
    1. [1]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

    2. [2]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    3. [3]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    4. [4]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    5. [5]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    6. [6]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    7. [7]

      Yufan Pan Xue Ding Jiayu Lin Haiting Wu Hairong Huang Cuixue Chen Meiling Ye . Oil Cosmetics, Charming Chemistry: A Gradient Science Popularization Scheme for Cream Cosmetic Preparation. University Chemistry, 2025, 40(4): 382-389. doi: 10.12461/PKU.DXHX202406078

    8. [8]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    9. [9]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    10. [10]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    11. [11]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    12. [12]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    13. [13]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    14. [14]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    15. [15]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    16. [16]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    17. [17]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    18. [18]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    19. [19]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    20. [20]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

Metrics
  • PDF Downloads(9)
  • Abstract views(583)
  • HTML views(188)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return