Citation: YE Yu-ling, FU Meng-qian, CHEN Hong-lin, ZHANG Xiao-ming. Effect of acidity on the catalytic performance of ZSM-5 zeolites in the synthesis of trioxane from formaldehyde[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(3): 311-320. shu

Effect of acidity on the catalytic performance of ZSM-5 zeolites in the synthesis of trioxane from formaldehyde

  • Corresponding author: CHEN Hong-lin, hlchen@cioc.ac.cn
  • Received Date: 20 January 2020
    Revised Date: 9 March 2020

    Fund Project: The project was supported by the National Key R & D Program of China (2018YFB0604902)The project was supported by the National Key R & D Program of China 2018YFB0604902

Figures(10)

  • ZSM-5 zeolite is considered as an effective catalyst in the synthesis of trioxane from formaldehyde. In this work, a series of ZSM-5 zeolites with different SiO2/Al2O3 molar ratios were used in the synthesis of trioxane from formaldehyde; through characterization by XRF, XRD, SEM, NH3-TPD, Py-FTIR and 27Al MAS NMR, the effect of acidity including the Brønsted and Lewis acid sites on the catalytic performance of ZSM-5 zeolites in the trioxane synthesis was investigated. The results indicate that the ZSM-5-250 zeolite with a SiO2/Al2O3 molar ratio of 250 exhibits excellent catalytic performance in the synthesis of trioxane. The ZSM-5-250 zeolite owns sufficient amount of Brønsted acid sites which are active for the synthesis of formaldehyde to trioxane; meanwhile, it has few Lewis acid sites and can then effectively inhibit various side-reactions like the Cannizzaro or Tishchenko reactions. Moreover, the ZSM-5-250 zeolite displays high stability with a single-pass lifetime of 114 h and can be regenerated easily through calcination at 550℃.
  • 加载中
    1. [1]

      MU Y B, JIA M C, JIANG W, WAN X B. A novel branched polyoxymethylene synthesized by cationic copolymerization of 1, 3, 5-Trioxane with 3-(Alkoxymethyl)-3-ethyloxetane[J]. Macromol Chem Phys, 2013,214(23):2752-2760. doi: 10.1002/macp.201300473

    2. [2]

      HOFFMANN M, BIZZARRI C, LEITNER W, MULLER T E. Reaction pathways at the initial steps of trioxane polymerisation[J]. Catal Sci Technol, 2018,8(21):5594-5603. doi: 10.1039/C8CY01691G

    3. [3]

      WU Q, LI W, WANG M, HAO Y, CHU T, SHANG J, LI H, ZHAO Y, JIAO Q. Synthesis of polyoxymethylene dimethyl ethers from methylal and trioxane catalyzed by bronsted acid ionic liquids with different alkyl groups[J]. Rsc Adv, 2015,5(71):57968-57974. doi: 10.1039/C5RA08360E

    4. [4]

      BARANOWSKI C J, BAHMANPOUR A M, KROCHER O. Catalytic synthesis of polyoxymethylene dimethyl ethers (OME):A review[J]. Appl Catal B:Environ, 2017,217:407-420. doi: 10.1016/j.apcatb.2017.06.007

    5. [5]

      ROESSLER D G-U S-S V. Procédé de préparation du trioxanne: FR1374872[P]. 1964-10-09.

    6. [6]

      BALASHOV A L, KRASNOV V L, DANOV S M, CHERNOV A Y, SULIMOV A V. Formation of cyclic oligomers in concentrated aqueous solutions of formaldehyde[J]. J Struct Chem, 2001,42(3):398-403. doi: 10.1023/A:1012408904389

    7. [7]

      GRUTZNER T, HASSE H. Solubility of formaldehyde and trioxane in aqueous solutions[J]. J Chem Eng Data, 2004,49(3):642-646. doi: 10.1021/je030243h

    8. [8]

      MAIWALD M, GRUTZNER T, STROFER E, HASSE H. Quantitative NMR spectroscopy of complex technical mixtures using a virtual reference:Chemical equilibria and reaction kinetics of formaldehyde-water-1, 3, 5-trioxane[J]. Anal Bioanal Chem, 2006,385(5):910-917. doi: 10.1007/s00216-006-0477-3

    9. [9]

      GRUTZNER T, HASSE H, LANG N, SIEGERT M, STROFER E. Development of a new industrial process for trioxane production[J]. Chem Eng Sci, 2007,62(18/20):5613-5620.  

    10. [10]

      MASAMOTO J, HAMANAKA K, YOSHIDA K, NAGAHARA H, KAGAWA K, IWAISAKO T, KOMAKI H. Synthesis of trioxane using heteropolyacids as catalyst[J]. Angew Chem-Int Ed, 2000,39(12):2102-2104. doi: 10.1002/1521-3773(20000616)39:12<2102::AID-ANIE2102>3.0.CO;2-E

    11. [11]

      XIA C, TANG Z, CHEN J, ZHANG X, LI Z, GUO E. Method of synthesizing trioxymethylene from formaldehyde by the catalytic action of an ionic liquid: US7244854B2[P]. 2007-07-17.

    12. [12]

      ZHAO Y M, HU Y F, QI J G, MA W T. Bronsted-acidic ionic liquids as catalysts for synthesizing trioxane[J]. Chin J Chem Eng, 2016,24(10):1392-1398. doi: 10.1016/j.cjche.2016.05.001

    13. [13]

      ARIAS-UGARTE R, WEKESA F S, FINDLATER M. Selective aldol condensation or cyclotrimerization reactions catalyzed by FeCl3[J]. Tetrahedron Lett, 2015,56(19):2406-2411. doi: 10.1016/j.tetlet.2015.03.040

    14. [14]

      KIEDIK M, KRUEGER A. Synthesis of trioxane in presence of sulfuric acid and ion-exchange resins as catalyst-comparisons of methods[J]. Przem Chem, 1990,69(12):539-540.

    15. [15]

      DINTZNER M R, MONDJINOU Y A, PILEGGI D J. Montmorillonite clay-catalyzed cyclotrimerization and oxidation of aliphatic aldehydes[J]. Tetrahedron Lett, 2010,51(5):826-827. doi: 10.1016/j.tetlet.2009.12.009

    16. [16]

      LEE S O, KITCHIN S J, HARRIS K D M, SANKAR G, DUGAL M, THOMAS J M. Acid-catalyzed trimerization of acetaldehyde:A highly selective and reversible transformation at ambient temperature in a zeolitic solid[J]. J Phys Chem B, 2002,106(6):1322-1326. doi: 10.1021/jp012440y

    17. [17]

      MORI H, YAMAZAKI T, OZAWA S, OGINO Y. Liquid-phase reaction of acetaldehyde over various ZSM-5 zeolites[J]. Bull Chem Soc Jpn, 1993,66(9):2498-2504. doi: 10.1246/bcsj.66.2498

    18. [18]

      YE Y, YAO M, CHEN H X Z. Influence of silanol defects of ZSM-5 zeolites on trioxane synthesis from formaldehyde[J]. Catal Lett, 2020,150(5):1445-1453. doi: 10.1007/s10562-019-03040-x

    19. [19]

      ISHIDA H, AKAGISHI K. The synthetic reaction of trioxane from formalin on the zeolite catalysts[J]. Nippon Kagaku Kaishi, 1996(3):290-297. doi: 10.1246/nikkashi.1996.290

    20. [20]

      FU M, YE Y, LEI Q, CHEN H, ZHANG X. Research on the synthetic 1, 3, 5-trioxane over ZSM-5 zeolite[J]. Chin J Synthetic Chem, 2020.

    21. [21]

      RODRIGUEZ-GONZALEZ L, SIMON U. NH3-TPD measurements using a zeolite-based sensor[J]. Meas Sci Technol, 2010,21(2)7.  

    22. [22]

      DIEZ V K, APESTEGUIA C R, DI COSIMO J I. Synthesis of ionones on solid Bronsted acid catalysts:Effect of acid site strength on ionone isomer selectivity[J]. Catal Today, 2010,149(3/4):267-274.  

    23. [23]

      WU W Q, WEITZ E. Modification of acid sites in ZSM-5 by ion-exchange:An in-situ FT-IR study[J]. Appl Surf Sci, 2014,316:405-415. doi: 10.1016/j.apsusc.2014.07.194

    24. [24]

      JIN F, LI Y D. A FT-IR and TPD examination of the distributive properties of acid sites on ZSM-5 zeolite with pyridine as a probe molecule[J]. Catal Today, 2009,145(1/2):101-107.  

    25. [25]

      ISERNIA L F. FT-IR study of the relation, between extra-framework aluminum species and the adsorbed molecular water, and its effect on the acidity in ZSM-5 steamed zeolite[J]. Mater Res-Ibero-Am J, 2013,16(4):792-802.

    26. [26]

      RODRIGUEZ-GONZALEZ L, HERMES F, BERTMER M, RODRIGUEZ-CASTELLON E, JIMENEZ-LOPEZ A, SIMON U. The acid properties of H-ZSM-5 as studied by NH3-TPD and 27Al-MAS-NMR spectroscopy[J]. Appl Catal A:Gen, 2007,328(2):174-182. doi: 10.1016/j.apcata.2007.06.003

    27. [27]

      WOOLERY G L, KUEHL G H, TIMKEN H C, CHESTER A W, VARTULI J C. On the nature of framework bronsted and lewis acid sites in ZSM-5[J]. Zeolites, 1997,19(4):288-296. doi: 10.1016/S0144-2449(97)00086-9

    28. [28]

      LI S H, HUANG S J, SHEN W L, ZHANG H L, FANG H J, ZHENG A M, LIU S B, DENG F. Probing the spatial proximities among acid sites in dealuminated H-Y zeolite by solid-state NMR spectroscopy[J]. J Phys Chem C, 2008,112(37):14486-14494. doi: 10.1021/jp803494n

    29. [29]

      GELBARD G. Organic synthesis by catalysis with ion-exchange resins[J]. Ind Eng Chem Res, 2005,44(23):8468-8498. doi: 10.1021/ie0580405

    30. [30]

      BIRDJA Y Y, KOPER M T M. The importance of cannizzaro-type reactions during electrocatalytic reduction of carbon dioxide[J]. J Am Chem Soc, 2017,139(5):2030-2034. doi: 10.1021/jacs.6b12008

    31. [31]

      RUSSELL A E, MILLER S P, MORKEN J P. Efficient Lewis acid catalyzed intramolecular cannizzaro reaction[J]. J Org Chem, 2000,65(24):8381-8383. doi: 10.1021/jo0010734

    32. [32]

      OESTREICH D, LAUTENSCHUTZ L, ARNOLD U, SAUER J. Reaction kinetics and equilibrium parameters for the production of oxymethylene dimethyl ethers (OME) from methanol and formaldehyde[J]. Chem Eng Sci, 2017,163:92-104. doi: 10.1016/j.ces.2016.12.037

    33. [33]

      INDU B, ERNST W R, GELBAUM L T. Methanol formic acid esterfication equilibrium in sulfuric acid solutions-influence of sodium salts[J]. Ind Eng Chem Res, 1993,32(5):981-985. doi: 10.1021/ie00017a031

    34. [34]

      MORRIS S A, GUSEV D G. Rethinking the claisen-tishchenko reaction[J]. Angew Chem-Int Ed, 2017,56(22):6228-6231. doi: 10.1002/anie.201611186

    35. [35]

      WU J B, ZHU H Q, WU Z W, QIN Z F, YAN L, DU B L, FAN W B, WANG J G. High Si/Al ratio HZSM-5 zeolite:An efficient catalyst for the synthesis of polyoxymethylene dimethyl ethers from dimethoxymethane and trioxymethylene[J]. Green Chem, 2015,17(4):2353-2357. doi: 10.1039/C4GC02510E

    36. [36]

      ARROYO S T, GARCIA A H, ALVERO M M, MARTIN J A S. Theoretical study of the neutral hydrolysis of methyl formate via a concerted and stepwise water-assisted mechanism using free-energy curves and molecular dynamics simulation[J]. Struct Chem, 2011,22(4):909-915. doi: 10.1007/s11224-011-9777-0

    37. [37]

      GLARBORG P, ALZUETA M U, KJAERGAARD K, DAM-JOHANSEN K. Oxidation of formaldehyde and its interaction with nitric oxide in a flow reactor[J]. Combust Flame, 2003,132(4):629-638. doi: 10.1016/S0010-2180(02)00535-7

    38. [38]

      HOCHGREB S, DRYER F L. A comprehensive study on CH2O oxidation kinetics[J]. Combust Flame, 1992,91(3/4):257-284.

    39. [39]

      OLM C, VARGA T, VALKO E, CURRAN H J, TURANYI T. Uncertainty quantification of a newly optimized methanol and formaldehyde combustion mechanism[J]. Combust Flame, 2017,186:45-64. doi: 10.1016/j.combustflame.2017.07.029

  • 加载中
    1. [1]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    2. [2]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    3. [3]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    4. [4]

      Ruofan QiJing ZhangWang SunBai YuZhenhua WangKening Sun . Solid-acid-Lewis-base interaction accelerates lithium ion transport for uniform lithium deposition. Chinese Chemical Letters, 2025, 36(6): 110009-. doi: 10.1016/j.cclet.2024.110009

    5. [5]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    6. [6]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    7. [7]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    8. [8]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    9. [9]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    10. [10]

      Qing LiYumei FengYuhua XieQi XuYifei LiYingjie YuFang LuoZehui Yang . MOF derived RuO2/V2O5 nanoneedles for robust and stable water oxidation in acid. Chinese Chemical Letters, 2025, 36(7): 111074-. doi: 10.1016/j.cclet.2025.111074

    11. [11]

      Quanxing MaoZhengliang WangZhinan HuZiqi YangHui LiYali YaoZijun YongTianyi Ma . Facial detection of formaldehyde by using acidichromic carbon dots and the reaction between formaldehyde and ammonium chloride. Chinese Chemical Letters, 2025, 36(7): 110499-. doi: 10.1016/j.cclet.2024.110499

    12. [12]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    13. [13]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    14. [14]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    15. [15]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    16. [16]

      Changzhu HuangWei DaiShimao DengYixin TianXiaolin LiuJia LinHong Chen . A self-cleaning window for high-efficiency photodegradation of indoor formaldehyde. Chinese Chemical Letters, 2024, 35(9): 109429-. doi: 10.1016/j.cclet.2023.109429

    17. [17]

      Jing GuoZhi-Guo LuRui-Chen ZhaoBao-Ku LiXin Zhang . Nucleic acid therapy for metabolic-related diseases. Chinese Chemical Letters, 2025, 36(3): 109875-. doi: 10.1016/j.cclet.2024.109875

    18. [18]

      Xiying WuAnze LiuYuzhong YanYing LuHuan Wang . Folic acid ameliorates the immunogenicity of PEGylated liposomes. Chinese Chemical Letters, 2025, 36(6): 110285-. doi: 10.1016/j.cclet.2024.110285

    19. [19]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    20. [20]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

Metrics
  • PDF Downloads(20)
  • Abstract views(1482)
  • HTML views(90)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return