Citation: MA Xiao-ying, ZHAO Yi, XU Pei-yao, MA Shuang-chen. Removal of elemental mercury in flue gas with PMS solution catalyzed by Co doped BiFeO3[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(3): 375-384. shu

Removal of elemental mercury in flue gas with PMS solution catalyzed by Co doped BiFeO3

  • Corresponding author: MA Xiao-ying, ncepuyxm@163.com
  • Received Date: 11 September 2017
    Revised Date: 11 January 2018

    Fund Project: National Science-Technology Support Plan of China 2014BAC23B04-06Beijing Major Scientific and Technological Achievement Transformation Project of China Z151100002815012The project was supported by Fundamental Research Funds for the Central Universities 2014ZD41The project was supported by Fundamental Research Funds for the Central Universities (2014ZD41), National Science-Technology Support Plan of China (2014BAC23B04-06) and Beijing Major Scientific and Technological Achievement Transformation Project of China (Z151100002815012)

Figures(13)

  • A aseries of Co-doped BiFeO3 magnetic catalysts(BiFe1-xCoxO3, x=5%-20%) were synthesized by the tartaric acid sol-gel method, and the prepared catalysts were characterized using X-ray powder diffraction (XRD), Brunauer Emmett Teller (BET) technique, vibration sample magnetometer (VSM) and X ray photoelectron spectroscopy(XPS). The catalytic activity of Co doped BiFeO3 to activate Peroxymonosulfate (PMS) was evaluated at a self-designed bubbling reactor. The effects of Co ration in catalyst, dosage of the catalyst, PMS concentration, and solution pH and reaction temperature on the removal of elemental mercury were investigated systematically, and the optimum conditions were obtained. The result indicates that the average removal efficiency of elemental mercury reaches 89.36% within 100 min under the following condition:70℃, 10% doping Co, 3.9 mmol/L PMS concentration, 0.5 g/L catalyst dosage and pH 8. Moreover, it is testified that SO4·- and·OH are the active species when Hg0 is oxidized to Hg2+, where the tert-butyl alcohol and ethyl alcohol are used as quenchers. Finally, the mechanisms of mercury removal with PMS solution catalyzed by BiFe0.9Co0.1O3 are speculated on the basis of XPS results.
  • 加载中
    1. [1]

      ZHAO Y, HAO R L, GUO Q. A novel pre-oxidation method for elemental mercury removal utilizing a complex vaporized absorbent[J]. J Hazard Mater, 2014,280:118-126. doi: 10.1016/j.jhazmat.2014.07.061

    2. [2]

      LIU Y X, WANG Y, WANG Q, PAN J F, ZHANG Y, ZHOU J, ZHANG J. A study on removal of elemental mercury in flue gas using Fenton solution[J]. J Hazard Mater, 2015,292:164-172. doi: 10.1016/j.jhazmat.2015.03.027

    3. [3]

      LIU Y X, ZHOU J F, ZHANG Y C, PAN J F, WANG Q, ZHANG J. Removal of Hg0 and simultaneous removal of Hg0/SO2/NO in flue gas using two Fenton-like reagents in a spray reactor[J]. Fuel, 2015,145:180-188. doi: 10.1016/j.fuel.2014.12.084

    4. [4]

      ZHOU C, SUN L, ZHANG A, WU X, MA C, SU S. Fe3-x CuxO4 as highly active heterogeneous Fenton-like catalysts toward elemental mercury removal[J]. Chemosphere, 2015,125:16-24. doi: 10.1016/j.chemosphere.2014.12.082

    5. [5]

      ZHOU C, WANG B, MA C, SONG Z J, ZENG Z. Gaseous elemental mercury removal through heterogeneous Fenton-like processes using novel magnetically separable Cu0.3Fe2.7-xTixO4catalysts[J]. Fuel, 2015,161(2):254-261.  

    6. [6]

      JI Y, KONG D, LU J, HAO J, KANG F, YIN X. Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A:Kinetics, reaction pathways, and formation of brominated by-products[J]. J Hazard Mater, 2016,313:229-237. doi: 10.1016/j.jhazmat.2016.04.033

    7. [7]

      WANG Y, ZHOU L, DUAN X, SUN H, TIN EL, JIN W. Photochemical degradation of phenol solutions on Co3O4nanorods with sulfate radicals[J]. Catal Today, 2015,258:576-584. doi: 10.1016/j.cattod.2014.12.020

    8. [8]

      DENG J, SHAO Y, GAO N, TAN C, ZHAO S, HU X. CoFe2O4 magnetic nanoparticles as a highly active heterogeneous catalyst of oxone for the degradation of diclofenac in water[J]. J Hazard Mater, 2013,262:836-844. doi: 10.1016/j.jhazmat.2013.09.049

    9. [9]

      FENG Y, LIU J, WU D, ZHOU Z, DENG Y, ZHANG T. Efficient degradation of sulfamethazine with CuCo2O4 spinel nanocatalysts for peroxymonosulfate activation[J]. Chem Eng J, 2015,280:514-524. doi: 10.1016/j.cej.2015.05.121

    10. [10]

      JAAFARZADEG N, GHANBARI F, AHMADI M. Catalytic degradation of 2, 4-dichlorophenoxyacetic acid (2, 4-D) by nano-Fe2O3 activated peroxymonosulfate:Influential factors and mechanism determination[J]. Chemosphere, 2016,169:568-576.  

    11. [11]

      AN J, ZHU L, WANG N, SONG Z, YANG Z, DU D, TANG H. Photo-Fenton-like degradation of tetrabromobisphenol A with graphene BiFeO3 composite as a catalyst[J]. Chem Eng J, 2013,219:225-237. doi: 10.1016/j.cej.2013.01.013

    12. [12]

      GU Y H, ZHAO J G, ZHANG W Y, LIU S, GE S P, CHEN W P, ZHANG Y. Improved ferromagnetism and ferroelectricity of La and Co co-doped BiFeO3 ceramics with Fe vacancies[J]. Ceram Int, 2016,42(7):8863-8868. doi: 10.1016/j.ceramint.2016.02.134

    13. [13]

      ZHANG L, YANG X, HAN E, ZHAO L, LIAN J. Reduced graphene oxide wrapped Fe3O4-Co3O4 yolk-shell nanostructures for advanced catalytic oxidation based on sulfate radicals[J]. Appl Surf Sci, 2017,396:945-954. doi: 10.1016/j.apsusc.2016.11.066

    14. [14]

      KHARISOV B I, DIAS H V R, KHARISSOVA O V. Mini-review:Ferrite nanoparticles in the catalysis[J]. Arab J Chem, 2014:1-13.  

    15. [15]

      REN Y, LIN L, MA J, YANG J, FENG J, FAN Z. Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4, (M=Co, Cu, Mn, and Zn) as heterogeneous catalysts in the water[J]. Appl Catal B:Environ, 2015,165:572-578. doi: 10.1016/j.apcatb.2014.10.051

    16. [16]

      CAI C, ZHANG H, ZHONG X, HOU L. Ultrasound enhanced heterogeneous activation of peroxymonosulfate by a bimetallic Fe-Co/SBA-15 catalyst for the degradation of orange Ⅱ in water[J]. J Hazard Mater, 2014,283:70-75.  

    17. [17]

      MADHAVAN J, MARUTHAMUTHU P, MURUGESAN S, ANANDAN S. Kinetic studies on visible light-assisted degradation of acid red 88 in presence of metal-ion coupled oxone reagent[J]. Appl Catal B:Environ, 2008,83(1/2):8-14.  

    18. [18]

      XU L, WANG J. Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol[J]. Environ Sci Technol, 2016,46(18):10145-10153.  

    19. [19]

      YU Z, WANG W, SONG L, LU L, WANG Z, JIANQ X, DONG C, QIU R. Acceleration comparison between Fe2+/H2O2, and Co2+/oxone for decolouration of azo dyes in homogeneous systems[J]. Chem Eng J, 2013,234:475-483. doi: 10.1016/j.cej.2013.08.013

    20. [20]

      XU X, YE Q, TANG T, WANG D. Hg0 oxidative absorption by K2S2O8solution catalyzed by Ag+ and Cu2+[J]. J Hazard Mater, 2008,158(2/3):410-416.  

    21. [21]

      NIKSA S, HELBLE J J, FUJIWARA N. Kinetic modeling of homogeneous mercury oxidation:The importance of NO and H2O in predicting oxidation in coal-derived systems[J]. Environ Sci Technol, 2001,35(18):3701-3706. doi: 10.1021/es010728v

    22. [22]

      GUAN Y H, MA J, REN Y M, LIU Y L, LIN LQ, ZHANG C. Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals[J]. Water Res, 2013,47(14):5431-5438. doi: 10.1016/j.watres.2013.06.023

    23. [23]

      ZOU J, MA J, CHEN L, LI X, GUAN Y, XIE P, PAN C. Rapid acceleration of ferrousiron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(Ⅲ)/Fe(Ⅱ) cycle with hydroxylamine[J]. Environ Sci Technol, 2013,47(20):11685-11691. doi: 10.1021/es4019145

    24. [24]

      ZHANG T, ZHU H, CROUE J P. Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water:efficiency, stability, and mechanism[J]. Environ Sci Technol, 2013,47(6):2784-2791. doi: 10.1021/es304721g

    25. [25]

      WU Q, ZHANG H, ZHOU L, BAO C, ZHU H, ZHANG Y. Synthesis and application of rGO/CoFe2O4 composite for catalytic degradation of methylene blue on heterogeneous Fenton-like oxidation[J]. J Taiwan Inst Chem Eng, 2016,67:484-494. doi: 10.1016/j.jtice.2016.08.004

    26. [26]

      XU Y, AI J, ZHANG H. The mechanism of degradation of bisphenol A using the magnetically separable CuFe2O4/peroxymonosulfate heterogeneous oxidation process[J]. J Hazard Mater, 2016,309:87-96. doi: 10.1016/j.jhazmat.2016.01.023

    27. [27]

      HU P, LONG M. Cobalt-catalyzed sulfate radical-based advanced oxidation:A review on heterogeneous catalysts and applications[J]. Appl Catal B:Environ, 2016,181:103-117. doi: 10.1016/j.apcatb.2015.07.024

    28. [28]

      TAN C, GAO N, DENG Y, DENG J, ZHOU S, LI J, XIN X. Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as heterogeneous activator of peroxymonosulfate[J]. J Hazard Mater, 2014,276:452-460. doi: 10.1016/j.jhazmat.2014.05.068

    29. [29]

      ERIC G H, SUDIPTA S, WILLIAM T S. Fenton-like reaction catalyzed by the rare earth Inner transition metal cerium[J]. Environ Sci Technol, 2008,42(13):5014-5019. doi: 10.1021/es8001508

    30. [30]

      ZHAO Y, HAO R, ZHANG P, ZHOU S. An integrative process for Hg0 removal using vaporized H2O2/Na2S2O8[J]. Fuel, 2014,136:113-121. doi: 10.1016/j.fuel.2014.07.046

    31. [31]

      SOMMAR J, KATARINA D, STROMBERG D, FENG X. A kinetic study of the gas-phase reaction between the hydroxyl radical and atomic mercury[J]. Atmos Environ, 2001,35:3049-3054. doi: 10.1016/S1352-2310(01)00108-X

  • 加载中
    1. [1]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    2. [2]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    3. [3]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    4. [4]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    5. [5]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    6. [6]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    7. [7]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    8. [8]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    9. [9]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    10. [10]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    11. [11]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    12. [12]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    13. [13]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    14. [14]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    17. [17]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

    18. [18]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    19. [19]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    20. [20]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

Metrics
  • PDF Downloads(15)
  • Abstract views(3080)
  • HTML views(1379)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return