Influence of cerium doping on CO2 capture of CaO-based sorbents
- Corresponding author: YU Zhong-liang, yuzl@sxicc.ac.cn ZHAO Jian-tao, zhaojt@sxicc.ac.cn
Citation:
YANG Bin, YU Zhong-liang, LI Chun-yu, ZHOU Xing, GUO Shuai, LI Guang, ZHAO Jian-tao, FANG Yi-tian. Influence of cerium doping on CO2 capture of CaO-based sorbents[J]. Journal of Fuel Chemistry and Technology,
;2019, 47(3): 344-351.
LI Ying-jie, ZHAO Chang-sui. Experimental study based on calcium-based absorbent cyclic reaction (CCR) for CO2-capture[J]. J Chin Soc Power Eng, 2008,28(1):117-121. doi: 10.3321/j.issn:1000-6761.2008.01.026
LI Zhen-shan, CAI Ning-sheng, HUANG Yu-yu. Experimental research on hydrogen production from sorption enhanced steam methane reforming[J]. J Fuel Chem Technol, 2007,35(1):79-84. doi: 10.3969/j.issn.0253-2409.2007.01.016
LI Zhen-shan, CAI Ning-sheng. Modeling of hydrogen production by sorption enhanced methane steam reforming reactions[J]. J Fuel Chem Technol, 2008,36(1):99-103. doi: 10.3969/j.issn.0253-2409.2008.01.019
RONG N, WANG Q, FANG M, CHENG L, LUO Z, CEN K. Steam hydration reactivation of CaO-based sorbent in cyclic carbonation/calcination for CO2 capture[J]. Energy Fuels, 2013,27(9):5332-5340. doi: 10.1021/ef4007214
QIAO Chun-zhen, WANG Bao-li, XIAO Yun-han. Characteristics of different Ca-based CO2 absorbents during cyclic calcination-carbonation[J]. J Fuel Chem Technol, 2010,38(4):478-482. doi: 10.3969/j.issn.0253-2409.2010.04.017
GUO Ming-nv, ZHANG Li, TANG Qiang, BO Feng, YANG Zhong-qing. Cyclic adsorption characteristic of CaO/MgO and CaO/Ca9Al6O18 for simultaneous CO2/SO2 capture[J]. J Fuel Chem Technol, 2012,40(6):757-762. doi: 10.3969/j.issn.0253-2409.2012.06.019
XIE Ming-shuang. Cyclic calcination/carbonation characteristic and kinetics of modified Ca-based sorbent for CO2[D]. Chongqing: Chongqing University, 2013.
GUO H, KOU X, ZHAO Y, WANG S, SUN Q, MA X. Effect of synergistic interaction between Ce and Mn on the CO2 capture of calcium-based sorbent:Textural properties, electron donation, and oxygen vacancy[J]. Chem Eng J, 2018,334:237-246. doi: 10.1016/j.cej.2017.09.198
WU S, LAN P. A kinetic model of nano-CaO reactions with CO2 in a sorption complex catalyst[J]. AIChE J, 2012,58(5):1570-1577. doi: 10.1002/aic.v58.5
ZHAN Wang-cheng, GUO Yun, GONG Xue-qing, GUO Yang-long, WANG Yan-qin, LU Guan-zhong. Surface oxygen activation on CeO2 and its catalytic performances for oxidation reactions[J]. China Sci:Chem, 2012(4):433-445.
ZHAO Fang, TIAN Zhi-ming. Preparation and catalytic properties of CaO/MgO mixed catalyst for biodiesel synthesis[J]. Ind Catal, 2017,25(3):58-62. doi: 10.3969/j.issn.1008-1143.2017.03.011
LIU B, LI C, ZHANG G, YAN L, LI Z. Direct synthesis of dimethyl carbonate from CO2 and methanol over CaO-CeO2 catalysts:the role of acid-base properties and surface oxygen vacancies[J]. New J Chem, 2017,41(20):12231-12240. doi: 10.1039/C7NJ02606D
ZHANG Lei, ZHANG Li, YAN Yun-fei, YANG Zhong-qing, GUO Ming-nv. Effect of Ce, Zr on cyclic performance of CaO-based CO2 sorbents[J]. J Chem Ind Eng, 2015,66(2):612-617.
WANG S, FAN S, FAN L, ZHAO Y, MA X. Effect of cerium oxide doping on the performance of CaO-based sorbents during calcium looping cycles[J]. Environ Sci Technol, 2015,49(8):5021-5027. doi: 10.1021/es5052843
YU X, WEN Z, LI H, TU S, YAN J. Transesterification of Pistacia chinensis oil for biodiesel catalyzed by CaO-CeO2 mixed oxides[J]. Fuel, 2011,90(5):1868-1874. doi: 10.1016/j.fuel.2010.11.009
FANG J, BI X, SI D, JIANG Z, HUANG W. Spectroscopic studies of interfacial structures of CeO2-TiO2 mixed oxides[J]. Appl Surf Sci, 2007,253(22):8952-8961. doi: 10.1016/j.apsusc.2007.05.013
RODRIGUEZ J A, WANG X, HANSON J C, LIU G. The behavior of mixed-metal oxides:Structural and electronic properties of Ce1-xCaxO2 and Ce1-xCaxO[J]. J Chem Phys, 2003,119(11):5659-5669. doi: 10.1063/1.1601595
PACCHIONI G, RICART J M, ILLAS F. Ab initio cluster model calculations on the chemisorption of CO2 and SO2 probe molecules on MgO and CaO (100) surfaces. A theoretical measure of oxide basicity[J]. J Am Chem Soc, 1994,116(22):10152-10158. doi: 10.1021/ja00101a038
LIU Shui-gang, LI Jun-ping, ZHAO Ning, WEI Wei, SUN Yu-han. Preparation and property of mesoporous CaO-ZrO2 solid base with high activity and stability[J]. Chem Ind Eng Prog, 2007,26(11):1626-1630. doi: 10.3321/j.issn:1000-6613.2007.11.020
PING S, GRACE J R, LIM C J, ANTHONY E J. Determination of intrinsic rate constants of the CaO-CO2 reaction[J]. Chem Eng Sci, 2008,63(1):47-56. doi: 10.1016/j.ces.2007.08.055
AIHARA M, NAGAI T, MATSUSHITA J, NEGISHI Y, OHYA H. Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/decarbonation reaction[J]. Appl Energy, 2001,69(3):225-238. doi: 10.1016/S0306-2619(00)00072-6
HAN Long, WANG Qin-hui, MA Qiang, YU Chun-jiang, LUO Zhong-yang, CEN Ke-fa. Kinetics study on CaO carbonation reaction at pressurized conditions[J]. Proc CSEE, 2009,29(14):41-46. doi: 10.3321/j.issn:0258-8013.2009.14.008
REN Bin, KAO Hong-tao, LI Ai-li. Study on the carbonation reaction of Ca-based absorbent[J]. Coal Convers, 2012,35(2):85-88. doi: 10.3969/j.issn.1004-4248.2012.02.019
Mengzhen JIANG , Qian WANG , Junfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Gang Lang , Jing Feng , Bo Feng , Junlan Hu , Zhiling Ran , Zhiting Zhou , Zhenju Jiang , Yunxiang He , Junling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194
Simin Wei , Yaqing Yang , Junjie Li , Jialin Wang , Jinlu Tang , Ningning Wang , Zhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114
Xiangyang Ji , Yishuang Chen , Peng Zhang , Shaojia Song , Jian Liu , Weiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
Xianghai Song , Xiaoying Liu , Zhixiang Ren , Xiang Liu , Mei Wang , Yuanfeng Wu , Weiqiang Zhou , Zhi Zhu , Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055
Yangrui Xu , Yewei Ren , Xinlin Liu , Hongping Li , Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
a: Ce/Ca_0; b: Ce/Ca_1; c: Ce/Ca_0.5; d: Ce/Ca_0.25
a: Ce/Ca_1; b: Ce/Ca_0.5; c: Ce/Ca_0.25; d: Ce/Ca_0
a: Ce/Ca_0; b: Ce/Ca_0.25; c: Ce/Ca_0.5; d: Ce/Ca_1
a: Ce/Ca_0; b: Ce/Ca_0.25; c: Ce/Ca_0.5; d: Ce/Ca_1
a: Ce/Ca_0; b: Ce/Ca_0.25; c: Ce/Ca_0.5; d: Ce/Ca_1
a: Ce/Ca_0; b: Ce/Ca_0.25; c: Ce/Ca_0.5; d: Ce/Ca_1