Citation: YANG Bin, YU Zhong-liang, LI Chun-yu, ZHOU Xing, GUO Shuai, LI Guang, ZHAO Jian-tao, FANG Yi-tian. Influence of cerium doping on CO2 capture of CaO-based sorbents[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(3): 344-351. shu

Influence of cerium doping on CO2 capture of CaO-based sorbents

  • Corresponding author: YU Zhong-liang, yuzl@sxicc.ac.cn ZHAO Jian-tao, zhaojt@sxicc.ac.cn
  • Received Date: 21 December 2018
    Revised Date: 22 January 2019

    Fund Project: The project was supported by the National Key Research and Development Program of China (2018YFB0605401-03)The project was supported by the National Key Research and Development Program of China 2018YFB0605401-03

Figures(9)

  • The CeO2-doped CaO-based sorbent was prepared by the homogeneous precipitation method using P123 as the soft template. The influence of CeO2 doping on the capture of CO2 was investigated. The CeO2 doping can promote the formation of surface oxygen species, and facilitate the carbonation reaction. The interactions in CaO-CeO2 lead to the electrons transfer from Ca to surface oxygen species. Moreover, when Ce ions are substituted by Ca ions, the charge neutrality is destroyed in the CeO2 crystal, which promotes the formation of oxygen vacancies and O2-. Ea is tested to be 28.1 kJ/mol for the carbonation reaction of pure CaO sorbent, while Ea decreases to the minimal value of 10.2 kJ/mol when adding CeO2 to CaO sorbent with a Ce/Ca molar ratio of 0.25. Also, the doping of CeO2 is beneficial to the high dispersion of CaO and prevention of CaO sintering. The Ce-doped sorbents exhibit a superior capture capacity and cyclic stability in carbonation/calcination cycles.
  • 加载中
    1. [1]

      LI Ying-jie, ZHAO Chang-sui. Experimental study based on calcium-based absorbent cyclic reaction (CCR) for CO2-capture[J]. J Chin Soc Power Eng, 2008,28(1):117-121. doi: 10.3321/j.issn:1000-6761.2008.01.026

    2. [2]

      LI Zhen-shan, CAI Ning-sheng, HUANG Yu-yu. Experimental research on hydrogen production from sorption enhanced steam methane reforming[J]. J Fuel Chem Technol, 2007,35(1):79-84. doi: 10.3969/j.issn.0253-2409.2007.01.016

    3. [3]

      LI Zhen-shan, CAI Ning-sheng. Modeling of hydrogen production by sorption enhanced methane steam reforming reactions[J]. J Fuel Chem Technol, 2008,36(1):99-103. doi: 10.3969/j.issn.0253-2409.2008.01.019

    4. [4]

      RONG N, WANG Q, FANG M, CHENG L, LUO Z, CEN K. Steam hydration reactivation of CaO-based sorbent in cyclic carbonation/calcination for CO2 capture[J]. Energy Fuels, 2013,27(9):5332-5340. doi: 10.1021/ef4007214

    5. [5]

      QIAO Chun-zhen, WANG Bao-li, XIAO Yun-han. Characteristics of different Ca-based CO2 absorbents during cyclic calcination-carbonation[J]. J Fuel Chem Technol, 2010,38(4):478-482. doi: 10.3969/j.issn.0253-2409.2010.04.017

    6. [6]

      GUO Ming-nv, ZHANG Li, TANG Qiang, BO Feng, YANG Zhong-qing. Cyclic adsorption characteristic of CaO/MgO and CaO/Ca9Al6O18 for simultaneous CO2/SO2 capture[J]. J Fuel Chem Technol, 2012,40(6):757-762. doi: 10.3969/j.issn.0253-2409.2012.06.019

    7. [7]

      XIE Ming-shuang. Cyclic calcination/carbonation characteristic and kinetics of modified Ca-based sorbent for CO2[D]. Chongqing: Chongqing University, 2013. 

    8. [8]

      GUO H, KOU X, ZHAO Y, WANG S, SUN Q, MA X. Effect of synergistic interaction between Ce and Mn on the CO2 capture of calcium-based sorbent:Textural properties, electron donation, and oxygen vacancy[J]. Chem Eng J, 2018,334:237-246. doi: 10.1016/j.cej.2017.09.198

    9. [9]

      WU S, LAN P. A kinetic model of nano-CaO reactions with CO2 in a sorption complex catalyst[J]. AIChE J, 2012,58(5):1570-1577. doi: 10.1002/aic.v58.5

    10. [10]

      ZHAN Wang-cheng, GUO Yun, GONG Xue-qing, GUO Yang-long, WANG Yan-qin, LU Guan-zhong. Surface oxygen activation on CeO2 and its catalytic performances for oxidation reactions[J]. China Sci:Chem, 2012(4):433-445.  

    11. [11]

      ZHAO Fang, TIAN Zhi-ming. Preparation and catalytic properties of CaO/MgO mixed catalyst for biodiesel synthesis[J]. Ind Catal, 2017,25(3):58-62. doi: 10.3969/j.issn.1008-1143.2017.03.011

    12. [12]

      LIU B, LI C, ZHANG G, YAN L, LI Z. Direct synthesis of dimethyl carbonate from CO2 and methanol over CaO-CeO2 catalysts:the role of acid-base properties and surface oxygen vacancies[J]. New J Chem, 2017,41(20):12231-12240. doi: 10.1039/C7NJ02606D

    13. [13]

      ZHANG Lei, ZHANG Li, YAN Yun-fei, YANG Zhong-qing, GUO Ming-nv. Effect of Ce, Zr on cyclic performance of CaO-based CO2 sorbents[J]. J Chem Ind Eng, 2015,66(2):612-617.  

    14. [14]

      WANG S, FAN S, FAN L, ZHAO Y, MA X. Effect of cerium oxide doping on the performance of CaO-based sorbents during calcium looping cycles[J]. Environ Sci Technol, 2015,49(8):5021-5027. doi: 10.1021/es5052843

    15. [15]

      YU X, WEN Z, LI H, TU S, YAN J. Transesterification of Pistacia chinensis oil for biodiesel catalyzed by CaO-CeO2 mixed oxides[J]. Fuel, 2011,90(5):1868-1874. doi: 10.1016/j.fuel.2010.11.009

    16. [16]

      FANG J, BI X, SI D, JIANG Z, HUANG W. Spectroscopic studies of interfacial structures of CeO2-TiO2 mixed oxides[J]. Appl Surf Sci, 2007,253(22):8952-8961. doi: 10.1016/j.apsusc.2007.05.013

    17. [17]

      RODRIGUEZ J A, WANG X, HANSON J C, LIU G. The behavior of mixed-metal oxides:Structural and electronic properties of Ce1-xCaxO2 and Ce1-xCaxO[J]. J Chem Phys, 2003,119(11):5659-5669. doi: 10.1063/1.1601595

    18. [18]

      PACCHIONI G, RICART J M, ILLAS F. Ab initio cluster model calculations on the chemisorption of CO2 and SO2 probe molecules on MgO and CaO (100) surfaces. A theoretical measure of oxide basicity[J]. J Am Chem Soc, 1994,116(22):10152-10158. doi: 10.1021/ja00101a038

    19. [19]

      LIU Shui-gang, LI Jun-ping, ZHAO Ning, WEI Wei, SUN Yu-han. Preparation and property of mesoporous CaO-ZrO2 solid base with high activity and stability[J]. Chem Ind Eng Prog, 2007,26(11):1626-1630. doi: 10.3321/j.issn:1000-6613.2007.11.020

    20. [20]

      PING S, GRACE J R, LIM C J, ANTHONY E J. Determination of intrinsic rate constants of the CaO-CO2 reaction[J]. Chem Eng Sci, 2008,63(1):47-56. doi: 10.1016/j.ces.2007.08.055

    21. [21]

      AIHARA M, NAGAI T, MATSUSHITA J, NEGISHI Y, OHYA H. Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/decarbonation reaction[J]. Appl Energy, 2001,69(3):225-238. doi: 10.1016/S0306-2619(00)00072-6

    22. [22]

      HAN Long, WANG Qin-hui, MA Qiang, YU Chun-jiang, LUO Zhong-yang, CEN Ke-fa. Kinetics study on CaO carbonation reaction at pressurized conditions[J]. Proc CSEE, 2009,29(14):41-46. doi: 10.3321/j.issn:0258-8013.2009.14.008

    23. [23]

      REN Bin, KAO Hong-tao, LI Ai-li. Study on the carbonation reaction of Ca-based absorbent[J]. Coal Convers, 2012,35(2):85-88. doi: 10.3969/j.issn.1004-4248.2012.02.019

  • 加载中
    1. [1]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    2. [2]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    5. [5]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    6. [6]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    7. [7]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    8. [8]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    9. [9]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    10. [10]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    11. [11]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    12. [12]

      Junjie TANGYunting ZHANGZhengjiang LIUJiani WU . Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    15. [15]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    16. [16]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    17. [17]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    18. [18]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    19. [19]

      Yangrui XuYewei RenXinlin LiuHongping LiZiyang Lu . NH2-UIO-66 Based Hydrophobic Porous Liquid with High Mass Transfer and Affinity Surface for Enhancing CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-0. doi: 10.3866/PKU.WHXB202403032

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(17)
  • Abstract views(1175)
  • HTML views(288)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return