Citation: ZOU Tao, ZHU Chun-peng, ZHANG Yu, LIN Yi-an, LIU Jun, DU Yan-xue. Characteristics of microstructures and gasification reactivity of co-pyrolysis coal char with oily sludge and blended coal[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(2): 137-143. shu

Characteristics of microstructures and gasification reactivity of co-pyrolysis coal char with oily sludge and blended coal

  • Corresponding author: ZOU Tao, zoutao@aliyun.com
  • Received Date: 30 September 2019
    Revised Date: 23 December 2019

    Fund Project: National Key Research and Development Project of China 2018YFB0604604The project was supported by Shaanxi Provincial Key Research and Development Program of China (2019GY-143) and National Key Research and Development Project of China (2018YFB0604604)The project was supported by Shaanxi Provincial Key Research and Development Program of China 2019GY-143

Figures(6)

  • Char samples were prepared by pyrolysis of oily sludge and blended coal at 850-1150 ℃. The pore structure and crystallite structure of chars were analyzed by N2 adsorption-desorption and X-ray diffraction (XRD). Effects of pyrolysis temperature and amount of oily sludge on gasification reactivity of the char was investigated by thermogravimetric analysis (TGA). The results show that increasing pyrolysis temperature and adding oily sludge can promote the formation of more abundant pore structure of chars, strengthen chars-CO2 gasification reaction and inhibit graphitization process of chars, thus improving gasification reactivity of the chars. However, too high pyrolysis temperature or too much sludge will also result in dense structure or pore plugging of coal char, and reduce gasification reactivity of the char.
  • 加载中
    1. [1]

      LI Da-shang. Analysis of the adjustment the product structure of the independent coking enterprises to turn losses into gains[J]. Coal Chem Ind, 2015,43(3):1-6. doi: 10.3969/j.issn.1005-9598.2015.03.001

    2. [2]

      JIAO Hai-li. The preparation of coke for gasification and Intrinsic correlation between its reactivity with the structural evolution[D]. Taiyuan: Taiyuan University of Technology, 2019.

    3. [3]

      ZOU Tao, XU Hong-wei, YUAN Shan-lu, DU Yan-xue, DAI Ai-jun, GE Qi-ming, WEI Sun-chang, HE Gen-liang. Influence of blending low-rank coals on gasification characteristics of gasification coke[J]. J China Coal Soc, 2017,42(S2):512-517.  

    4. [4]

      WEN C, GAO X P, XU M H. A CCSEM study on the transformation of included and excluded minerals during coal devolatilization and char combustion[J]. Fuel, 2016,172(5):96-104.  

    5. [5]

      XIE Ke-chang. Coal Structure and Its Reactivity[M]. Beijing: Science Press, 2002.

    6. [6]

      YU Jun-qin, WEI Jun-tao, DING Lu, GUO Qing-hua, YU Guang-suo. Effect of biomass ash addition on gasification characteristics of anthracite char[J]. J Fuel Chem Technol, 2018,46(10):1161-1167. doi: 10.3969/j.issn.0253-2409.2018.10.002 

    7. [7]

      FAN Wen-ke, CUI Tong-min, LI Hong-jun, CHANG Qing-hua, GUO Qing-hua, YU Guang-suo, WANG Fu-chen. Effect of AAEM on gasification reactivity of Shenfu char[J]. J Fuel Chem Technol, 2016,44(8):897-903. doi: 10.3969/j.issn.0253-2409.2016.08.001 

    8. [8]

      YU De-ping, ZHANG Yu-ming, YANG Yun-quan, GAO Shi-qiu, XU Guang-wen. Gasification characteristics of petroleum coke catalyzed by black liquor in a fluidized bed[J]. Acta Pet Sin(Pet Process Sect), 2013,29(3):438-446. doi: 10.3969/j.issn.1001-8719.2013.03.012

    9. [9]

      LIU Y, GUAN Y J, ZHANG K. CO2 gasification performance and alkali/alkaline earth metals catalytic mechanism of Zhundong coal char[J]. Korean J Chem Eng, 2018,35(4):859-866. doi: 10.1007/s11814-017-0357-x

    10. [10]

      KOPYSCINSKI J, HABIBI R, MIMS C A, HILL J M. K2CO3 catalyzed CO2 gasification of ash-free coal: Kinetic study[J]. Energy Fuels, 2013,27(8):4875-4883. doi: 10.1021/ef400552q

    11. [11]

      WU Yan. Research on co-sludge ability and gasification of refinery oily sludge and high sulfur petroleum coke[D]. Shanghai: East China University of Science and Technology, 2011.

    12. [12]

      TANG Li-hua, ZHU Zi-bin, ZHAO Qing-xiang, ZHENG Zhi-sheng, ZHANG Cheng-fang, MA Lu-ming. Study on activated sludge as binder for briquette gasification II[J]. Study on activated sludge as binder for briquette gasification II. Investigation of gasification characteristics and secondary pollution of sludge briquette, 1999,19(1):93-97.  

    13. [13]

      TANNER J, KABIR K B, MVLLER M, BHATTACHARYA S. Low temperature entrained flow pyrolysis and gasification of a victorian brown coal[J]. Fuel, 2015,154(8):107-113.  

    14. [14]

      WU H W. Ash formation during pulverized coal combustion and gasification at pressure[D]. Newcastle: University of Newcastle, 2000.

    15. [15]

      LIU Dong-dong. Evolution mechanism and contril methods of structure in preparation of unformed activated carbons from coals[D]. Harbin: Harbin Institute of Technology, 2017.

    16. [16]

      ZHOU Jun, ZHANG Hai, LV Jun-fu, YUE Guang-xi. Effect of pyrolysis temperature on pore structure of anthratite chars produced by high temperatures[J]. J Fuel Chem Technol, 2007,35(2):155-159. doi: 10.3969/j.issn.0253-2409.2007.02.005

    17. [17]

      MENG Qiao-rong, ZHAO Yang-sheng, HU Yao-qing, FENG Zeng-chao, YU Yan-mei. Experimental study on pore structure and pore shape of coking coal[J]. J China Coal Soc, 2011,36(3):487-490.  

    18. [18]

      ZHANG Xiao-yang, ZHOU Bin-xuan, AN Dong-hai, CUI Lin, ZHENG Ying, DONG Yong. Effect of heating rate on pyrolysis characteristics and char structure of Zhundong lignite coal[J]. J China Coal Soc, 2019,44(2):604-610.  

    19. [19]

      LIU Long-long. Catalytic cracking experiments and mechanism of coal[D]. Hangzhou: Zhejiang University, 2018.

    20. [20]

      FENG Z H, BAI Z Q, ZHENG H Y, ZHENG K W, HOU R R, GUO Z X, KONG L X, BAI J, LI W. Study on the pyrolysis characteristic of mild liquefaction solid product of Hami coal and CO2 gasification of its char[J]. Fuel, 2019,84(5):1034-1041.

    21. [21]

      ZHANG S F, WEN L Y, WANG K, ZOU C, XU J. Effects of additives on sulfur transformation, crystallite structure and properties of coke during coking of high-sulfur coal[J]. J Iron Steel Res Int, 2015,22(10):897-904. doi: 10.1016/S1006-706X(15)30087-X

    22. [22]

      LAURENDEAU N M. Heterogeneous kinetics of coal char gasification and combustion[J]. Prog Energy Combust Sci, 1978,4(4):221-270. doi: 10.1016/0360-1285(78)90008-4

    23. [23]

      LIU H, LUO C H, TOYOTA M, KATO S, UEMIYA S, KOJIMA T, TOMINAGA H. Mineral reaction and morphology change during gasification of coal in CO2 at elevated temperature[J]. Fuel, 2003,82(5):523-530. doi: 10.1016/S0016-2361(02)00292-2

    24. [24]

      XU Xiu-feng, CUI Hong, GU Yong-da, CHEN Xue-ying, WU dong. The influence of coal char preparation conditions on its gasification reactivity[J]. J Fuel Chem Technol, 1996,24(5):28-34.

    25. [25]

      ZOU Xiao-peng. Research on gasification/Co-gasification characteristics and mechanism of coal, waste and other carbonaceous materials[D]. Shanghai: East China University of Science and Technology, 2019.

    26. [26]

      LI P, YU Q, QIN Q, DU W. The effects of slag compositions on the coal gasification reaction in molten blast furnace slag[J]. Energy Sources, Part A, 2013,36(1):73-79.  

  • 加载中
    1. [1]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    2. [2]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    3. [3]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    4. [4]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    5. [5]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    6. [6]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    7. [7]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    8. [8]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    9. [9]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    10. [10]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    11. [11]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    12. [12]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    13. [13]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    14. [14]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    15. [15]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    16. [16]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    19. [19]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    20. [20]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

Metrics
  • PDF Downloads(4)
  • Abstract views(593)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return