Citation: Wang Liping, Zhao Lichen, Lan Kaishun. Progress in Porous Metal Oxide Catalysts Derived from MOFs[J]. Chemistry, ;2017, 80(7): 611-620. shu

Progress in Porous Metal Oxide Catalysts Derived from MOFs

  • Received Date: 12 November 2016
    Accepted Date: 3 January 2017

Figures(11)

  • Porous metal oxides are used widely in catalysis, lithium ion battery, solar cell and gas sensor due to their high surface areas, large pore size, special morphology and structure characteristics. As a novel class of porous crystalline materials with periodic network structure, metal-organic frameworks (MOFs) are widely applied in gas storage, gas separation and catalysis. In recent years, the preparation of porous carbon and porous metal oxide using MOFs as precursors has become a new research hotspot in MOFs applications. This work reviews that porous metal oxides and metal oxides/carbon composites derived from MOFs are used as the catalysts for CO oxidation, hydrogen production, dehydrogenation of isobutane, oxidation of cyclohexene, direct oxidation of alcohols to esters, oxidative amidation of aldehydes, degradation of organic compounds and oxygen reduction.
  • 加载中
    1. [1]

      Y Liu, J Deng, S Xie et al. Chin. J. Catal., 2016, 37(8):1193~1205.

    2. [2]

      M Abirami, S M Hwang, J Yang et al. ACS Appl. Mater. Interf., 2016, 8(48):32778~32787.

    3. [3]

      T Graunke, K Schmitt, J W llenstein. Sensors, 2016, 2016(24):1~22.

    4. [4]

      D Zhang, J Liu, B Xia. J. Electron. Mater., 2016, 45(8):4324~4330.

    5. [5]

      L Q Qwabe, V D B C Dasireddy, S Singh et al. Int. J. Hydrogen Energy, 2016, 41(4):2144~2153.

    6. [6]

      N R Elezovic, V R Radmilovic, N V Krstajic. RSC Adv., 2016, 6(8):6788~6801.

    7. [7]

      J J H B Sattler, J Ruiz~Martinez, E Santillan~Jimenez et al. Chem. Rev., 2014, 114(20):10613~10653.

    8. [8]

    9. [9]

      J Liu, S Zou, L Xiao et al. Catal. Sci. Technol., 2014, 4(2):441~446.

    10. [10]

      Z Haider, Y S Kang. ACS Appl. Mater. Interf., 2014, 6(13):10342~10352.

    11. [11]

      Z Wu, M Li, S H Overbury. J. Catal., 2012, 285(1):61~73.

    12. [12]

    13. [13]

      J Li, C Ma, X Xu et al. Environ. Sci. Technol., 2008, 42(23):8947~8951.

    14. [14]

      C Y Ma, Z Mu, J J Li et al. J. Am. Chem. Soc., 2010, 132(8):2608~2613.

    15. [15]

    16. [16]

      X Chen, T Yu, X Fan et al. Appl. Surf. Sci., 2007, 253(20):8500~8506.

    17. [17]

      J Y Luo, M Meng, X Li et al. J. Catal., 2008,254(2):310~324.

    18. [18]

      G A Seisenbaeva, M P Moloney, R Tekoriute et al. Langmuir, 2010, 26(12):9809~9817.

    19. [19]

      S W Liu, C Li, J G Yu et al. Cryst. Eng. Commun., 2011, 13(7):2533~2541.

    20. [20]

      A Sinhamahapatra, A K Giri, P Pal et al. J. Mater. Chem., 2012, 22(33):17227~17235.

    21. [21]

    22. [22]

      H Li, M Eddaoudi, M O'Keeffe et al. Nature, 1999, 402(6759):276~279.

    23. [23]

      M Eddaoudi, K Jaheon, R Nathaniel et al. Nature, 2002,295(5554):469~472.

    24. [24]

      J Albero, H García. New Mater. Catal. Appl., 2016, 23(3):13~40.

    25. [25]

      A Arnanz, M Pintado-Sierra, A Corma et al. Adv. Synth. Catal., 2012, 354(7):1347~1355.

    26. [26]

      N T S Phan, K K A Le, T D Phan. Appl. Catal. A-Gen., 2010, 382(2):246~253.

    27. [27]

      I A Khan, Y Qian, A Badshah et al. ACS Appl. Mater. Interf., 2016, 8(27):1768~17275.

    28. [28]

      M Sabo, A Henschel, H Fr de et al. J. Mater. Chem., 2007, 17(36):3827~3832.

    29. [29]

      S Gao, Z Nan, M Shu et al. Appl. Catal. A-Gen., 2010, 388(1):196~201.

    30. [30]

      Y X Zhou. Aata Phys-Chem Sin., 2010, 26(4):939~945(7).

    31. [31]

      L P Wang, B Xiao, G Y Wang et al. Sci. China:Chem., 2011, 54(9):1468~1473.

    32. [32]

      L Wang, G Wang, F Wang et al. Asian J. Chem., 2013, 25(10):5385~5389.

    33. [33]

    34. [34]

      L Alaerts, E Séguin, H Poelman et al. Chem. Eur. J., 2006, 12(28):7353~7363.

    35. [35]

      Y Zhao, C Zhong, C J Liu. Catal. Commun., 2013, 38(5):74~76.

    36. [36]

      W A Qiu, Y Wang, L I Chuanqiang et al. Chin. J. Catal., 2012, 33(s 4/6):986~992.

    37. [37]

      W Cho, Y H Lee, H Lee J et al. Chem. Commun., 2009, (31):4756~4758

    38. [38]

      X D Xu, R G Cao, S Y Jeong et al. Nano Lett., 2012, 12(9):4988~4991.

    39. [39]

      P Mahata, D Sarma, C Madhu et al. Dalton Transac., 2011, 40(9):1952~1960.

    40. [40]

      J Zhao, F Q Wang, P P Su et al. J. Mater. Chem., 2012, 22(26):13328~13333.

    41. [41]

    42. [42]

      B T Qiao, J X Liu, Y G Wang et al. ACS Catal., 2015, 5(11):6249~6254.

    43. [43]

      M F Luo, J M Ma, J Q Lu et al. J. Catal., 2006, 246(1):52~59.

    44. [44]

      G Avgouropoulos, T Ioannides. Appl. Catal. B-Environ., 2006, 67(1):1~11.

    45. [45]

    46. [46]

      F Zhang, C Chen, W M Xiao et al. Catal. Commun., 2012,26(35):25~59.

    47. [47]

    48. [48]

      M F Luo, J M Ma, J Q Lu et al. J. Catal., 2007, 246(1):52~59.

    49. [49]

      Y Feng, X Zheng. Nano Lett., 2010, 10(11):4762~4766.

    50. [50]

    51. [51]

      S Y Zhang, H Liu, C C Sun et al. J. Mater. Chem. A, 2015, 3(10):5294~5298.

    52. [52]

    53. [53]

      H Liu, S Y Zhang, Y Y Liu et al. Small, 2015, 11(26):3130~3134.

    54. [54]

    55. [55]

    56. [56]

      Z W Shi, M Guo, L J Wang et al. Chin. J. Chem. Phys., 2016(2):199~204.

    57. [57]

    58. [58]

      Y Lu, Y P Zang, H M Zhang et al. Sci. Bull., 2016, 61(13):1~10.

    59. [59]

      D Li, H Haneda, A Shunichi-Hishita et al. Chem. Mater., 2005, 17(10):2596~2602.

    60. [60]

      B Palanisamy, C M Babu, B Sundaravel et al. J. Hazard. Mater., 2013, 252~253C(4):233~242.

    61. [61]

      P Khemthong, P Photai, N Grisdanurak. Int. J. Hydrogen Energ., 2013, 38(36):15992~16001.

    62. [62]

    63. [63]

      K E Krafft, C Wang, W B Lin. Adv. Mater., 2012, 24(15):2014~2018.

    64. [64]

      J Jun, C Jin, H Kim et al. Appl. Surf. Sci., 2009, 255(20):8544~8550.

    65. [65]

    66. [66]

    67. [67]

    68. [68]

    69. [69]

      L L Xu, Z L Wang, H L Song et al. Catal. Commum., 2013, 35(17):76~81.

    70. [70]

    71. [71]

      H H Zhao, H L Song, L L Xua et al. Appl. Catal. A-Gen., 2013,456(6):188~196.

    72. [72]

      W Nam, S Y Oh, J Kim et al. J. Org. Chem., 2003,68(20):7903~7906.

    73. [73]

      S Rayati, N Torabi, A Ghaemi et al. Inorg. Chim. Acta, 2008, 361(5):1239~1245.

    74. [74]

      M J Jeon, S H Park, J M Kim et al. J. Nanosci. Nanotechnol., 2014, 14(3):2527~2531.

    75. [75]

      H Q Dong, Y Y Chen, M Han et al. J. Mater. Chem. A, 2014, 2(5):1272~1276.

    76. [76]

      M Wu, W Zhan, Y Guo et al. Chin. J. Catal., 2016, 37(1):184~192.

    77. [77]

      R Dong, H Wang, Q Zhang et al. Cryst. Eng. Commun., 2015, 17(38):7406~7413.

    78. [78]

      S Nayak, S Malik, S Indris et al. Chem. Eur. J., 2010, 16(4):1158~1162.

    79. [79]

    80. [80]

      T Nobuta, A Fujiya, S Hirashima et al. Tetrahed. Lett., 2012, 53(39):5306~5308.

    81. [81]

      X F Wu. Chem. Eur. J., 2012, 18(29):8912~8915.

    82. [82]

      R V Jagadeesh, H Junge, M M Pohl et al. J. Am. Chem. Soc., 2013, 135(29):10776~10782

    83. [83]

      W Zhong, H L Liu, C H Bai et al. ACS Catal., 2015, 5(3):1850~1856

    84. [84]

      Y X Zhou, Y Z Chen, L N Cao et al. Chem. Commun., 2015, 51(39):8292~8295.

    85. [85]

      S C Ghosh, J S Y Ngiam, A M Seayad et al. J. Org. Chem., 2012, 77(18):8007~8015.

    86. [86]

      C H Bai, X F Yao, Y W Li. ACS Catal., 2015, 5(2):884~891.

    87. [87]

    88. [88]

    89. [89]

      L Peng, J L Zhang, Z M Xue et al. Chem. Commun., 2013,(49):11695~11697.

    90. [90]

      Z C Bai, B Sun, N Fan et al. Chem. Eur. J., 2012,18(25):5319~5324.

    91. [91]

      T Yousefi, A N Golikand, M H Mashhaddizadeh et al. Curr. Appl. Phys., 2012,12(10):544~549.

    92. [92]

      P Q Zhang, Y G Zhan, B G Cai et al. Nano Res., 2010, 3(4):235~243.

    93. [93]

      W Yu, J Zhang, T Peng. Appl. Catal. B-Environ., 2016, 181(12):220~227.

    94. [94]

    95. [95]

      X H Cao, B Zheng, X H Rui et al. Angew. Chem. Int. Ed., 2014, 53(5):1404~1409.

    96. [96]

    97. [97]

      Y Z Fan, R M Liu, W Du et al. J. Mater. Chem., 2012, 22(22):12609~12617.

    98. [98]

      Y Tan, C Xu, G Chen et al. Adv. Funct. Mater., 2012, 22(20):4584~4591.

    99. [99]

      Z S Wu, S Yang, Y Sun et al. J. Am. Chem. Soc., 2012, 134(22):9082~9085.

    100. [100]

      C Chaikittisilp, N L Torad, C L Li et al. Chem. Eur. J., 2014, 20(15):4217~4221.

    101. [101]

      Y Y Liang, Y G Li, H L Wang et al. J. Am. Chem. Soc., 2013, 135(6):2013~2036.

    102. [102]

      G J Zhang, C X Li, J Liu et al. J. Mater. Chem. A, 2014, 2(22), 8184~8189.

    103. [103]

      W Xia, R Q Zou, L An et al. Energ. Environ. Sci., 2015, 8(2):568~576.

  • 加载中
    1. [1]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    5. [5]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    6. [6]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    7. [7]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    8. [8]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    9. [9]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    11. [11]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    12. [12]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    13. [13]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    14. [14]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    15. [15]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    16. [16]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    18. [18]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    19. [19]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    20. [20]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

Metrics
  • PDF Downloads(9)
  • Abstract views(1193)
  • HTML views(279)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return