Citation: WANG Qing, CHENG Feng, PAN Shuo. Chemical bond concentration and energy density of oil shale kerogen[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(10): 1209-1218. shu

Chemical bond concentration and energy density of oil shale kerogen

  • Corresponding author: WANG Qing, rlx888@126.com
  • Received Date: 28 March 2017
    Revised Date: 28 June 2017

    Fund Project: The progect was supported by the National Natural Science Foundation of China(51676032).the National Natural Science Foundation of China 51676032

Figures(9)

  • The molecular structures of Fushun and Maoming kerogen were constructed based on the characterization techniques such as solid-state13C nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS) and ultimate analysis. Self-build kerogen models were modified on the basis of chemical bond concentration, chemical bonds concentration of experiment data and molecular structure match well, therefore constructed models have been proved to be accurate and reasonable from the perspective of chemical bonds. From the data of self-build and selected kerogen models, the relationship between metamorphic degree of oil shale kerogen with concentration of chemical bonds and energy density were studied. With the increase maturity of oil shale kerogen, the chemical bonds concentration between aromatic carbon and aromatic carbon, aliphatic carbon, hydrogen atom increase, the chemical bonds concentration between aliphatic carbon and aliphatic carbon, hydrogen atom decrease. Among them the chemical bonds concentration between the aromatic carbons, and that between aliphatic carbon and hydrogen atom change obviously. Valence electron energy and non-bond energy are two parts that make up total energy, being the steady chemical energy of oil shale kerogen and increase with increase of its metamorphic degree.
  • 加载中
    1. [1]

      WANG Qing, XU Xiang-cheng, CHI Ming-shu, ZHUANG Hong-xi, CUI Da, BAI Jing-ru. FT-IR study on composition of oil shale kerogen and its pyrolysis oil generation characteristics[J]. J Fuel Chem Technol, 2015,43(10). doi: 10.3969/j.issn.0253-2409.2015.10.017 

    2. [2]

      KUMAR R, BANSAL V, BADHE R M, MADHIRA I S S, SUGUMARAN V, AHMED S, CHRISTOPHER J, PATEL M B, BASU B. Characterization of indian origin oil shale using advanced analytical techniques[J]. Fuel, 2013,113:610-616. doi: 10.1016/j.fuel.2013.05.055

    3. [3]

      GAI R H, JIN L J, ZHANG J B, WANG J Y, HU H Q. Effect of inherent and additional pyrite on the pyrolysis behavior of oil shale[J]. J Anal Appl Pyrolysis, 2014,115:342-347.  

    4. [4]

      MACIELl G E, BARTUSKA V J, MIKNIS F P. Correlation between oil yields of oil shales and13C nuclear magnetic resonance spectra[J]. Fuel, 1978,57(8):505-506. doi: 10.1016/0016-2361(78)90163-1

    5. [5]

      MIKNIS F P, CONN P J. A common relation for correlating pyrolysis yields of coals and oil shales[J]. Fuel, 1986,65(2):248-250. doi: 10.1016/0016-2361(86)90014-1

    6. [6]

      FREUUD H, WALTERS C C, KELEMEN S R, SISKIN M, GORBATY M L, CURRY D J, BENCE A E. Predicting oil and gas compositional yields via chemical structure-chemical yield modeling (CS-CYM):Part 1-Concepts and implementation[J]. Org Geochem, 2007,38(2):288-305. doi: 10.1016/j.orggeochem.2006.09.009

    7. [7]

      SISKIN M, SCOUTEN C G, ROSE K D, ACZEL T, COLGROVE S G, PABST R E J. Detailed structural characterization of the organic material in rundle ramsay crossing and green river oil shales[J]. Fuel Energy Abstracts, 1996,37(1)10.  

    8. [8]

      RU X, CHENG Z Q, SONG L H, WANG H Y, LI J F. Experimental and computational studies on the average molecular structure of Chinese huadian oil shale kerogen[J]. J Mol Struct, 2012,1030(4):10-18.  

    9. [9]

      GUAN X H, LIU Y, WANG D, WANG Q, CHI M S, LIU S, LIU C G. Three-dimensional structure of a huadian oil shale kerogen model:An experimental and theoretical study[J]. Energy Fuels, 2015,29(7):4122-4136. doi: 10.1021/ef502759q

    10. [10]

      UNGERER P, COLLELLl J, YIANNOURAKOU M. Molecular modeling of the volumetric and thermodynamic properties of kerogen:Influence of organic type and maturity[J]. Energy Fuels, 2014,29(1):91-105.  

    11. [11]

      GUAN X H, WANG D, WANG Q, CHI M S, LIU C G. Estimation of various chemical bond dissociation enthalpies of large-sized kerogen molecules using DFT methods[J]. Mol Phys, 2016,114(11):1705-1755. doi: 10.1080/00268976.2016.1143983

    12. [12]

      LIU Z Y. Advancement in coal chemistry:structure and reactivity[J]. Sci Sin Chim, 2014,44(9):1431-1438. doi: 10.1360/N032014-00159

    13. [13]

      GUO X J, LIU Z Y, LIU Q Y, SHI L. Modeling of kraft lignin pyrolysis based on bond dissociation and fragments coupling[J]. Fuel Process Technol, 2015,135:133-149. doi: 10.1016/j.fuproc.2014.12.009

    14. [14]

      RU Xin. Study on the experiment and molecular simulation of oil shale pyrolysis[D]. Changchun:Jilin University, 2013.

    15. [15]

      VANDEGRIFT G F, WINANS R E, SCOTT R G, HORWITZ E P. Quantitative study of the carboxylic acids in Green River oil shale bitumen[J]. Fuel, 1980,59(9):627-633. doi: 10.1016/0016-2361(80)90124-6

    16. [16]

      IBRAHIMOV R A, BISSADA K K A. Comparative analysis and geological significance of kerogen isolated using open-system (palynological) versus chemically and volumetrically conservative closed-system methods[J]. Org Geochem, 2010,41(8):800-811. doi: 10.1016/j.orggeochem.2010.05.006

    17. [17]

      WANG Qing, HUANG Zong-yue, CHI Ming-shu, SHI Ju-xin, WANG Zhi-chao, SUI Yi. Chemical structure analysis of oil shale kerogen[J]. CIESC J, 2015,66(5):1861-1866.  

    18. [18]

      YEN T F. Structural aspects of organic components in oil shales[J]. Dev Petrol Sci, 1976,5:129-148. doi: 10.1016/S0376-7361(08)70047-5

    19. [19]

      LILLEV , HEINMAA I, PEHK T. Molecular model of Estonian kukersite kerogen evaluated by13C MAS NMR spectra[J]. Fuel, 2003,82(7):799-804. doi: 10.1016/S0016-2361(02)00358-7

    20. [20]

      HUANG Y, HAN X, JIANG X. Characterization of Dachengzi oil shale fast pyrolysis by Curie-point pyrolysis-GC-MS[J]. Oil Shale, 2015,32(2)134. doi: 10.3176/oil.2015.2.04

    21. [21]

      AL-HARAHSHEH A, AL-OTOOM A Y, SHAWABKEH R A. Sulfur distribution in the oil fractions obtained by thermal cracking of Jordanian El-Lajjun oil Shale[J]. Energy, 2005,30(15):2784-2795.  

    22. [22]

      ZHOU B, SHI L, LIU Q Y, LIU Z Y. Examination of structural models and bonding characteristics of coals[J]. Fuel, 2016,184:799-807. doi: 10.1016/j.fuel.2016.07.081

    23. [23]

      COLLELL J, UNGERER P, GLLIERO G, YIANNOURAKOU M, MONTEL F, PUJOL M. Molecular simulation of bulk organic matter in Type Ⅱ shales in the middle of the oil formation window[J]. Energy Fuels, 2014,28(12):7457-7466. doi: 10.1021/ef5021632

    24. [24]

      ZHANG Z, JAMILI A. Modeling the Kerogen 3D Molecular Structure[C]//SPE/CSUR Unconventional Resources Conference. Society of Petroleum Engineers, 2015.

    25. [25]

      BEHAR F, VANDENBROUCKE M. Chemical Modelling of Kerogens[J]. Org Geochem, 1987,11(1):15-24. doi: 10.1016/0146-6380(87)90047-7

    26. [26]

      QIN Kuang-zong, LAO Yong-xin. Investigation on the constitution and structure of Maoming and Fushun oil shale I:The aliphatic carbon structure of organic matter[J]. J Fuel Chem Technol, 1985,13(8):193-202.

  • 加载中
    1. [1]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    2. [2]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    3. [3]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    4. [4]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    5. [5]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    6. [6]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    7. [7]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    8. [8]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    9. [9]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    10. [10]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    11. [11]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    12. [12]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    13. [13]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    14. [14]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    15. [15]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    16. [16]

      Haolin Zhan Qiyuan Fang Jiawei Liu Xiaoqi Shi Xinyu Chen Yuqing Huang Zhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Networ. Acta Physico-Chimica Sinica, 2025, 41(2): 100017-. doi: 10.3866/PKU.WHXB202310045

    17. [17]

      Haiyang Jin Yonghai Hui Yongfei Zhang Lijun Gao Yun Wang . Application and Exploration of Nuclear Magnetic Resonance Spectrometer in Undergraduate Basic Laboratory Teaching. University Chemistry, 2025, 40(3): 245-250. doi: 10.12461/PKU.DXHX202406022

    18. [18]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    19. [19]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    20. [20]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

Metrics
  • PDF Downloads(3)
  • Abstract views(2980)
  • HTML views(1070)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return