Citation: ZHANG Xiao-pei, ZHANG Cheng, YU Sheng-hui, LI Xin, FENG Xiao-fei, MA Ya-fei, CHEN Gang. Changes of Zhundong coal properties by hydrothermal upgrading and its impacts on CO2 gasification[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(10): 1185-1190. shu

Changes of Zhundong coal properties by hydrothermal upgrading and its impacts on CO2 gasification

  • Corresponding author: ZHANG Cheng, chengzhang@mail.hust.edu.cn
  • Received Date: 9 June 2017
    Revised Date: 25 July 2017

    Fund Project: National Natural Science Foundation of China 51676076The project was supported by National Natural Science Foundation of China (51676076), National Program of International Science and Technology Cooperation (2015DFA60410) and Graduates' Innovation Fund of HUST (5003120003)Graduates' Innovation Fund of HUST 5003120003National Program of International Science and Technology Cooperation 2015DFA60410

Figures(8)

  • The Zhundong high sodium coal was hydrothermally upgraded at 150-350℃ in an autoclave. The inductively coupled plasma mass spectrometer (ICP-MS), nitrogen adsorption isotherm (BET) and X-ray diffraction (XRD) were used to investigate the changes of coal properties and the impacts on the CO2 gasification characteristics. The results indicate that the coal quality is increased after the hydrothermal upgrading. The removal effect of sodium is obvious, reaching to more than 95% at 300-350℃. The pore structure of the chars changes significantly, the specific surface area and total pore volume increase initially at 150-300℃ and then decrease at 300-350℃. The crystalline structure tends to be aromatic and graphitized, and the chemical structure becomes dense, orderly and stable. Additionally, the gasification reactivity exhibits a decreasing trend, especially for the chars treated at 300-350℃. The CO2 gasification reactivity during the process of hydrothermal upgrading is comprehensively influenced by different factors containing coal rank, sodium content, physical pore structure and chemical microcrystalline structure.
  • 加载中
    1. [1]

      YAN Lu-guang, XIA Xun-cheng, LÜ Shao-qin, WU Jia-chun, LIN Min, HUANG Chang-gang. Great promotion of development of large scale integrative energy base in Xinjiang[J]. Adv Technol Electri Eng Energy, 2011,30(1):1-7.  

    2. [2]

      WANG Zhong-ping. The current situation and prospects of Xinjiang clean coal technology[J]. Clean Coal Technol, 2009,15(4):9-13.  

    3. [3]

      CHEN Chuan, ZHANG Shou-yu, LIU Da-hai, GUO Xi, DONG Ai-xia, XIONG Shao-wu, SHI Da-zhong, LÜ Jun-fu. Existence form of sodium in high sodium coals from Xinjiang and its effect on combustion process[J]. J Fuel Chem Technol, 2013,41(7):832-838.  

    4. [4]

      TAO Yu-jie, ZHANG Yan-wei, ZHOU Jun-hu, JING Xue-hui, LI Tao, LIU Jian-zhong, CEN Ke-fa. Mineral conversion regularity and release behavior of Na, Ca during Zhundong coal's combustion[J]. Proc CSEE, 2015,35(5):1169-1175.  

    5. [5]

      LIU Jing, WANG Zhi-hua, XIANG Fei-peng, HUANG Zhen-yu, LIU Jian-zhong, ZHOU Jun-hu, CEN Ke-fa. Modes of occurrence and transformation of alkali metals in Zhundong coal during combustion[J]. J Fuel Chem Technol, 2014,42(3):316-322.  

    6. [6]

      Favas G, Jackson W R. Hydrothermal dewatering of lower rank coals. 1. Effects of process conditions on the properties of dried product[J]. Fuel, 2003,82(1):53-57. doi: 10.1016/S0016-2361(02)00192-8

    7. [7]

      Timpe R C, Mann M D, Pavlish J H, Louie P K K. Organic sulfur and hap removal from coal using hydrothermal treatment[J]. Fuel Process Technol, 2001,73(2):127-141. doi: 10.1016/S0378-3820(01)00201-6

    8. [8]

      FENG Xiao-fei, ZHANG Cheng, ZHANG Xiao-pei, LI Sheng-ming, GE Jiang, CHEN Gang. Influence of hydrothermal upgrading on physical and chemical structures and moisture readsorption characteristics of a lignite[J]. J Fuel Chem Technol, 2016,44(1):23-29.  

    9. [9]

      ZHANG Shu, CHEN Yan-ju, LIU Dan, WANG Lei, MI Jian-xin, WANG Yong-gang. Hydrothermal treatment affected to pore structure and surface property of shengli lignite[J]. Coal Sci Technol, 2013,41(6):117-121.  

    10. [10]

      Molina A, Mondragon F. Reactivity of coal gasification with steam and CO2[J]. Fuel, 1998,77(15):1831-1839. doi: 10.1016/S0016-2361(98)00123-9

    11. [11]

      Krevelen D W. Coal-typology, Chemistry, Physics, Constitution[M]. Elsevier Science & Technology, 1961.

    12. [12]

      LIU Yang, ZHANG Cheng, WANG Lan, ZHANG Xiao-pei, FENG Xiao-fei, CHEN Gang. Influence of Sodium-Based Compound on Ash Melting Characteristics of High Alkali Coal[J]. J Combust Sci Technol, 2017,03:268-273.  

    13. [13]

      Li G, Li S, Huang Q, Yao Q. Fine particulate formation and ash deposition during pulverized coal combustion of high-sodium lignite in a down-fired furnace[J]. Fuel, 2015,143:430-437. doi: 10.1016/j.fuel.2014.11.067

    14. [14]

      GE Li-chao, ZHANG Yan-wei, YING Zhi, WANG Zhi-hua, ZHOU Jun-hu, CEN Ke-fa. Influence of the hydrothermal dewatering on the gasification characteristics of typical chinese lignite[J]. Proc CSEE, 2013,33(32):14-20.  

    15. [15]

      LIU Peng, ZHOU Yang, LU Xi-lan, WANG Lan-lan, PAN Tie-ying, ZHANG De-xiang. Structural evolution of Xianfeng lignite during hydrothermal treatment[J]. J Fuel Chem Technol, 2016,44(2):129-137.  

    16. [16]

      Feng B, Bhatia S K. Variation of the pore structure of coal chars during gasification[J]. Carbon, 2003,41(3):507-523. doi: 10.1016/S0008-6223(02)00357-3

    17. [17]

      Ogunsola O I. Thermal upgrading effect on oxygen distribution in lignite[J]. Fuel Process Technol, 1993,34(1):73-81. doi: 10.1016/0378-3820(93)90062-9

    18. [18]

      ZHAO Wei-dong. Micromechanism and combustion characteristics of low-rank coal water slurry upgraded by hot water treatments[D]. Hangzhou:Zhejiang University, 2009.

    19. [19]

      Lu L, Sahajwalla V, Kong C, Harris D. Quantitative X-ray diffraction analysis and its application to various coals[J]. Carbon, 2001,39(12):1821-1833. doi: 10.1016/S0008-6223(00)00318-3

    20. [20]

      Sonibare O O, Haeger T, Foley S F. Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy[J]. Energy, 2010,35(12):5347-5353. doi: 10.1016/j.energy.2010.07.025

    21. [21]

      FAN Wen-ke, CUI Tong-min, LI Hong-jun, CHANG Qing-hua, GUO Qing-hua, YU Guang-suo, WANG Fu-chen. Effect of AAEM on gasification reactivity of Shenfu char[J]. J Fuel Chem Technol, 2016,44(8):897-903.  

    22. [22]

      Yen T F, Erdman J G, Pollack S S. Investigation of the structure of petroleum asphaltenes by X-ray diffraction[J]. Anal Chem, 1961,33(11):1587-1594. doi: 10.1021/ac60179a039

    23. [23]

      Takarada T, Tamai Y, Tomita A. Reactivities of 34 coals under steam gasification[J]. Fuel, 1985,64(10):1438-1442. doi: 10.1016/0016-2361(85)90347-3

    24. [24]

      XIE Ke-chang. Coal structure and its reactivity[M]. Beijing:Science Press, 2002.

  • 加载中
    1. [1]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    2. [2]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    3. [3]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    4. [4]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    5. [5]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    6. [6]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    7. [7]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    8. [8]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    9. [9]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    10. [10]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    11. [11]

      Hui BianXinyi YuanNan ZhangZhuo XuJuhong LianRuibin JiangJunqing YanDeng LiShengzhong (Frank) Liu . Correlating vacancy-defect density with CO2 activation for promoted CO2 methanation over CsPbBr3 photocatalyst. Chinese Chemical Letters, 2025, 36(7): 111034-. doi: 10.1016/j.cclet.2025.111034

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    14. [14]

      Xiang-Da ZhangJian-Mei HuangXiaorong ZhuChang LiuYue YinJia-Yi HuangYafei LiZhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937

    15. [15]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    16. [16]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    17. [17]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    18. [18]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    19. [19]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(2)
  • Abstract views(1548)
  • HTML views(222)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return