Citation: CHENG Li-jun, LIU Zhao, YUAN Shan-liang, HU Xin, ZHANG Biao, JIANG Yi. Preparation of Ag-Mn/γ-Al2O3-TiO2 catalysts by complexation-impregnation process with citric acid and its application in propane catalytic combustion[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(11): 1379-1385. shu

Preparation of Ag-Mn/γ-Al2O3-TiO2 catalysts by complexation-impregnation process with citric acid and its application in propane catalytic combustion

  • Corresponding author: JIANG Yi, yjiang@cioc.ac.cn
  • Received Date: 17 September 2019
    Revised Date: 29 September 2019

    Fund Project: The project was supported by Sichuan Science and Technology Program (2018GZ0314) and Project of CAS"Light of West China"program, 2014Sichuan Science and Technology Program 2018GZ0314

Figures(8)

  • A series of Ag-Mn/γ-Al2O3-TiO2 catalysts were prepared by different impregnation procedures. The catalysts were characterized by BET, XRD, TEM, XPS and H2-TPR, and the catalytic properties were investigated by propane catalytic combustion. Results show that compared with the conventional impregnation method, complexation-impregnation procedure with citric acid promotes the dispersion of Ag and Mn particles on the surface of catalyst and strengthens the interaction between Ag and Mn, so as to increase the relative content of reactive oxygen species and improve the reducibility of catalysts, which further improves the catalytic activity of propane combustion reaction. Especially, the Ag1Mn3/γ-Al2O3-TiO2 catalyst prepared by complexation-impregnation process with citric acid exhibits the best activity for propane catalytic combustion with 90% conversion at 263℃.
  • 加载中
    1. [1]

      HUANG H, XU Y, FENG Q, DENNIS Y, LEUNG D Y C. Low temperature catalytic oxidation of volatile organic compounds:A review[J]. Catal Sci Technol, 2015,5(5):2649-2669. doi: 10.1039/C4CY01733A

    2. [2]

      LI J, LIU H, DENG Y, LIU G, CHEN Y, YANG J. Emerging nanostructured materials for the catalytic removal of volatile organic compounds[J]. Nanotechnol Rev, 2016,5(1):147-181.  

    3. [3]

      BARANOWAKA K, OKAL J. Bimetallic Ru-Re/gamma-Al2O3 catalysts for the catalytic combustion of propane:Effect of the Re addition[J]. Appl Catal A:Gen, 2015,499:158-167. doi: 10.1016/j.apcata.2015.04.023

    4. [4]

      HU Z, QIU S, YOU Y, GUO Y, GUO Y, WANG L, ZHAN W, LU G. Hydrothermal synthesis of NiCeOx nanosheets and its application to the total oxidation of propane[J]. Appl Catal B:Environ, 2018,225:110-120. doi: 10.1016/j.apcatb.2017.08.068

    5. [5]

      CHEN S, LI Y, MA F, CHEN F, LU W. The relationship between the surface oxygen species and the acidic properties of mesoporous metal oxides and their effects on propane oxidation[J]. Catal Sci Technol, 2015,5(2):1213-1221. doi: 10.1039/C4CY01231C

    6. [6]

      HE C, CHENG J, ZHANG X, DOUTHWAITE M, PATTISSON S, HAO Z. Recent advances in the catalytic oxidation of volatile organic compounds:A review based on pollutant sorts and sources[J]. Chem Rev, 2019,119(7):4471-4568. doi: 10.1021/acs.chemrev.8b00408

    7. [7]

      QU Z, SHEN S, CHEN D, WANG Y. Highly active Ag/SBA-15 catalyst using post-grafting method for formaldehyde oxidation[J]. J Mol Catal A:Chem, 2012,356:171-177. doi: 10.1016/j.molcata.2012.01.013

    8. [8]

      QIN Y, QU Z, DONG C, HUANG N. Effect of pretreatment conditions on catalytic activity of Ag/SBA-15 catalyst for toluene oxidation[J]. Chin J Catal, 2017,38(9):1603-1612. doi: 10.1016/S1872-2067(17)62842-0

    9. [9]

      LAI Xiao-xiao, FENG Jie, ZHOU Xiao-ying, HOU Zhong-yan, LIN Tao, CHE Yao-qiang. Catalytic oxidation of toluene over potassium modified Mn/Ce0.65Zr0.35O2 catalyst[J]. Acta Phys-Chim Sin, 2020,36(x):1-10.

    10. [10]

      QIN Y, QU Z, DONG C, WANG Y, HUANG N. Highly catalytic activity of Mn/SBA-15 catalysts for toluene combustion improved by adjusting the morphology of supports[J]. J Environ Sci, 2019,76:208-216. doi: 10.1016/j.jes.2018.04.027

    11. [11]

      WANG J, LI J, JIANG C, ZHOU P, ZHANG P, YU J. The effect of manganese vacancy in birnessite-type MnO2 on room-temperature oxidation of formaldehyde in air[J]. Appl Catal B:Environ, 2017,204:147-155. doi: 10.1016/j.apcatb.2016.11.036

    12. [12]

      WANG J, ZHANG P, LI J, JIANG C, YUNUS R, KIM J. Room-temperature oxidation of formaldehyde by layered manganese oxide:Effect of water[J]. Environ Sci Technol, 2015,49(20):12372-12379. doi: 10.1021/acs.est.5b02085

    13. [13]

      LIN R, LIU W, ZHONG Y, LUO M. Catalyst characterization and activity of Ag-Mn complex oxides[J]. Appl Catal A:Gen, 2001,220(1/2):165-171.  

    14. [14]

      DENG J, HE S, XIE S, YANG H, LIU Y, GUO G, DAI H. Ultralow loading of silver nanoparticles on Mn2O3 nanowires derived with molten salts:A high-efficiency catalyst for the oxidative removal of toluene[J]. Environ Sci Technol, 2015,49(18)11089. doi: 10.1021/acs.est.5b02350

    15. [15]

      KHARLAMOVA T, MAMONTOV G, SALAEV M, ZAIKOVSKII V, POPOVA G, SOBOLEV V, KNYAZEV A, VODYANKINA O. Silica-supported silver catalysts modified by cerium/manganese oxides for total oxidation of formaldehyde[J]. Appl Catal A:Gen, 2013,467(10):519-529.  

    16. [16]

      QU Z, BU Y, QIN Y, WANGY , FU Q. The improved reactivity of manganese catalysts by Ag in catalytic oxidation of toluene[J]. Appl Catal B:Environ, 2013,132/133:353-362. doi: 10.1016/j.apcatb.2012.12.008

    17. [17]

      PAN H, SU Q, CHEN J, YE Q, LIU Y, SHI Y. Promotion of Ag/H-BEA by Mn for lean NO reduction with propane at low temperature[J]. Environ Sci Technol, 2009,43(24):9348-9353. doi: 10.1021/es901504b

    18. [18]

      LUO M, YUANX , ZHENG X. Catalyst characterization and activity of Ag-Mn, Ag-Co and Ag-Ce composite oxides for oxidation of volatile organic compounds[J]. Appl Catal A:Gen, 1998,175(1/2):121-129. doi: 10.1016/S0926-860X(98)00210-5

    19. [19]

      YUAN Shan-liang, LAN Hai, BO Qi-fei, ZHANG Biao, XIAO Xi, JIANG Yi. Effect of TiO2 doping on methane catalytic combustion deoxidation of CuMnCe/Al2O3 catalyst[J]. J Fuel Chem Technol, 2017,45(2):243-248. doi: 10.3969/j.issn.0253-2409.2017.02.015

    20. [20]

      PEREZ H, NAVARRO P, DELGADO J, MONTES M. Mn-SBA15 catalysts prepared by impregnation:Influence of the manganese precursor[J]. Appl Catal A:Gen, 2011,400(1/2):238-248. doi: 10.1016/j.apcata.2011.05.002

    21. [21]

      ZHANG Y, QIN Z, WANG G, ZHU H, DONG M, LI S, WU Z, LI Z, WU Z, ZHANG J, HU T, FAN W, WANG J. Catalytic performance of MnOx-NiO composite oxide in lean methane combustion at low temperature[J]. Appl Catal B:Environ, 2013,129:172-181. doi: 10.1016/j.apcatb.2012.09.021

    22. [22]

      XIE Y, GUO Y, GUO Y, WANG L, ZHAN W, WANG Y, GONG X, LU G. A highly effective Ni-modified MnOx catalyst for total oxidation of propane:the promotional role of nickel oxide[J]. RSC Adv, 2016,6(55):50228-50237. doi: 10.1039/C6RA09039G

    23. [23]

      LI G, HU W, HUANG F, CHEN J, GONG M, YUAN S, CHEN Y, ZHONG L. Pd catalyst supported on ZrO2-Al2O3 by double-solvent method for methane oxidation under lean conditions[J]. Can J Chem Eng, 2017,95(6):1117-1123. doi: 10.1002/cjce.22750

    24. [24]

      HU W, LI G, CHEN J, HUANG F, GONG M, ZHONG L, CHEN Y. Enhancement of activity and hydrothermal stability of Pd/ZrO2-Al2O3 doped by Mg for methane combustion under lean conditions[J]. Fuel, 2017,194:368-374. doi: 10.1016/j.fuel.2016.11.028

    25. [25]

      QU Z, HUANG W, CHENG M, BAO X. Restructuring and redispersion of silver on SiO2 under oxidizing/reducing atmospheres and its activity toward CO oxidation[J]. J Phys Chem B, 2005,109(33):15842-15848. doi: 10.1021/jp050152m

    26. [26]

      TANG X, CHEN J, LI Y, LI Y, XU Y, SHEN W. Complete oxidation of formaldehyde over Ag/MnOx-CeO2 catalysts[J]. Chem EngJ, 2006,118(1):119-125. doi: 10.1016/j.cej.2006.02.002

    27. [27]

      BAI B, QIAO Q, ARANDIYAN H, LI J, HAO J. Three-dimensional ordered mesoporous MnO2-supported Ag nanoparticles for catalytic removal of formaldehyde[J]. Environ Sci Technol, 2016,50(5):2635-2640. doi: 10.1021/acs.est.5b03342

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    3. [3]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    4. [4]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    5. [5]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    6. [6]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    7. [7]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    8. [8]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    13. [13]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    17. [17]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    18. [18]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    19. [19]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    20. [20]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

Metrics
  • PDF Downloads(15)
  • Abstract views(1408)
  • HTML views(250)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return