Citation: LI Yang, HE Yong-lai, JIN Li-jun, LIU Jing-chao, HU Hao-quan. Leaching characteristics of trace elements in hetero-aggregation fly ash from coal-fired power plant[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(11): 1394-1401. shu

Leaching characteristics of trace elements in hetero-aggregation fly ash from coal-fired power plant

  • Corresponding author: HU Hao-quan, hhu@dlut.edu.cn
  • Received Date: 11 September 2020
    Revised Date: 13 November 2020

    Fund Project: the Fundamental Research Funds for the Central Universities DUT2018TB0National Key R & D Program of China 2018YFB0605104The project was supported by National Key R & D Program of China (2018YFB0605104), National Natural Science Foundation of China (21776039) and the Fundamental Research Funds for the Central Universities (DUT2018TB0)National Natural Science Foundation of China 21776039

Figures(7)

  • This paper studied physicochemical and leaching characteristics of three hazardous trace elements As, Se and Pb in hetero-aggregation fly ash (HAFA) and coal fly ash (FA)samples which were collected from coal-fired power plant. The results show that the peak of particle size of HAFA is 138.04 and is 60.26 μm of FA; the fine particles agglomerate into large particles after agglomeration; the contents of heavy metals of As, Se and Pb in HAFA are all higher than those of in FA. The content of heavy metals in gypsum produced in the subsequent desulfurization process is decreased. The batch leaching experiments show that leaching concentrations of three metals in HAFA are suppressed by mild and alkaline condition for As, by acidic and alkaline condition for Se, and by alkaline condition for Pb. The column leaching experiments show that the leaching abilities of the trace elements in HAFA are inhibited in both acidic and aqueous solution.
  • 加载中
    1. [1]

      BP. BP Statistical Review of World Energy 2020[R]. London, June, 2020.

    2. [2]

      PUI D Y H, CHEN S C, ZUO Z. PM2.5 in China: Measurements, sources, visibility and health effects, andmitigation[J]. Particuology, 2014,13:1-26. doi: 10.1016/j.partic.2013.11.001

    3. [3]

      ZHAO Yong-chun, ZHANG Jun-ying, WEI Feng, CHEN Jun, ZHENG Chu-guang. Experimental study on agglomeration of submicron particles from coal combustion[J]. J Chem Ind Eng (China), 2007,58(11):2876-2881. doi: 10.3321/j.issn:0438-1157.2007.11.032

    4. [4]

      HU B, YI Y, LIANG C, YUAN Z, SZCZEPAN R, YANG L. Experimental study on particles agglomeration by chemical and turbulent agglomeration before electrostatic precipitators[J]. Powder Technol, 2018,335:186-194. doi: 10.1016/j.powtec.2018.04.016

    5. [5]

      GUO Y, ZHANG J, ZHAO Y, WANG S, JIANG C, ZHENG C. Chemical agglomeration of fine particles in coal combustion flue gas: Experimental evaluation[J]. Fuel, 2017,3:557-569.  

    6. [6]

      ZHOU L, CHEN W, WU H, SHEN A, YUAN Z, YANG L. Investigation on the relationship of droplet atomization performance and fine particle abatement during the chemical agglomeration process[J]. Fuel, 2019,245:65-77. doi: 10.1016/j.fuel.2019.02.033

    7. [7]

      SUN Z, YANG L, SHEN A, ZHOU L, WU H. Combined effect of chemical and turbulent agglomeration on improving the removal of fine particles by different coupling model[J]. Powder Technol, 2019,344:242-250. doi: 10.1016/j.powtec.2018.12.032

    8. [8]

      GUO Yi-quan, ZHANG Jun-ying, ZHAO Yong-chun, WANG Shao-long, JIANG Cheng, ZHENG Chu-guang. Experimental research on fine particles chemical agglomeration demonstration project in a 50 MW coal-fired power plant boiler[J]. Proc CSEE, 2016,36(S1):87-94.  

    9. [9]

      GUO Yi-quan, ZHAO Yong-chun, LI Gao-lei, ZHANG Jun-ying. Research on enhanced fly ash fine particulate emission control by chemical agglomeration of 300 MW coal-fired power stations[J]. Proc CSEE, 2019,39(3):754-763.  

    10. [10]

      KHODADOUST A P, NAITHANI P, THEIS T L, MURARKA I P. Leaching characteristics of arsenic from aged alkaline coal fly ash using column and sequential batch leaching[J]. Ind Eng Chem Res, 2011,50(4):2204-2213. doi: 10.1021/ie100909n

    11. [11]

      SU T, WANG J. Modeling batch leaching behavior of arsenic and selenium from bituminous coal fly ashes[J]. Chemosphere, 2011,85(8):1368-1374. doi: 10.1016/j.chemosphere.2011.08.002

    12. [12]

      SARMIENTO L M, ROESSLER J G, TOWNSEND T G. Trace Element Mobility from Coal Combustion Residuals Exposed to Landfill Leachate[J]. J Hazard Mater, 2019,365:962-970. doi: 10.1016/j.jhazmat.2018.11.028

    13. [13]

      KIM A G, HESBACH P. Comparison of fly ash leaching methods[J]. Fuel, 2009,88(5):926-937. doi: 10.1016/j.fuel.2008.11.013

    14. [14]

      GONG Xun, HAO Wei, ZHANG Dan, LI Lin, QIAO Yu, YAO Hong, XU Ming-hou. Leaching characteristics of heavy metals in fly ash from different ESPs of coal-fired power plant[J]. J Eng Thermo, 2009,30(1):156-160. doi: 10.3321/j.issn:0253-231X.2009.01.044

    15. [15]

      GB/T14848, Standard for groundwater quality[S].

    16. [16]

      U.S. EPA. Method 1313, liquid-solid partitioning as a function of extract pH using a parallel batch procedure[S].

    17. [17]

      U.S. EPA. Environmental fact sheet: Toxicity characteristic rule finalized. Washington DC: U. S. EPA, 1990[S].

    18. [18]

      ZHAO Wen, LIU Yong, BAO Jing-jing, GENG Jun-feng, YANG Lin-jun. Experimental Research on Fine Particles Removal from Flue Gas by Chemical Agglomeration[J]. Proc CSEE, 2013,33(20):52-58.  

    19. [19]

      HUANG Ye, QIAN Jue-shi, WANG Zhi, ZHANG Zhi-wei. Comparative study of CFB ashes and PC ashes[J]. Fly Ash Compr Util, 2009(3):7-9. doi: 10.3969/j.issn.1005-8249.2009.03.002

    20. [20]

      WANG N, SUN X, ZHAO Q, YANG Y, WANG P. Leachability and adverse effects of coal fly ash: A review[J]. J Hazard Mater, 2020,396122725. doi: 10.1016/j.jhazmat.2020.122725

    21. [21]

      HU Bin, LIU Yong, YANG Chun-min, HOU Da-wei, YUAN Zhu-lin, YANG Lin-jun. Simultaneous control of PM2.5 and SO3 by chemical agglomeration collaborative electrostatic precipitation[J]. J Chem Ind Eng (China), 2016,67(9):3902-3909.  

    22. [22]

      LANZERSTORFER C. Fly ash from coal combustion: Dependence of the concentration of various elements on the particle size[J]. Fuel, 2018,228:263-271. doi: 10.1016/j.fuel.2018.04.136

    23. [23]

      GUO B, NAKAMA S, TIAN Q, PAHLEVI N D, HU Z, SASAKI K. Suppression processes of anionic pollutants released from fly ash by various Ca additives[J]. J Hazard Mater, 2019,371:474-483. doi: 10.1016/j.jhazmat.2019.03.036

    24. [24]

      LI Yi-ming, SONG Ying-ying, PAN Yong-ping, SONG Hui-kai, YANG Bin, BAO Mu-tai. Adsorption of Pb2+ by Xanthan Gum in Water[J]. Environ Sci Technol, 2011,34(6G):1-4.  

    25. [25]

      FU Cong, BAI Xiang-fei, LIAN Jin-jing. Discussion on the leaching features of continuous column of arsenic in coal ash and the supergene migration[J]. Coal Qual Technol, 2016(2):53-59. doi: 10.3969/j.issn.1007-7677.2016.02.016

  • 加载中
    1. [1]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    2. [2]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    3. [3]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    4. [4]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    5. [5]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    6. [6]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    7. [7]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    8. [8]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    9. [9]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    10. [10]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    11. [11]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    12. [12]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    13. [13]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    14. [14]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    15. [15]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    16. [16]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    17. [17]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    18. [18]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(1)
  • Abstract views(652)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return