Citation: WANG Hua-sheng, REN Yan-jun, DENG Shuang, HUANG Jia-yu, GUO Feng-yan, TIAN Gang. Removal of Hg0 from simulated coal-fired flue gas by using activated spent FCC catalysts[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(12): 1466-1475. shu

Removal of Hg0 from simulated coal-fired flue gas by using activated spent FCC catalysts

  • Corresponding author: DENG Shuang, dengshuang@craes.org.cn
  • Received Date: 2 September 2020
    Revised Date: 20 October 2020

    Fund Project: The project was supported by the National Key Research and Development Program of China (2018YFB0605101) and the Ministry of Science and Technology of Chinathe National Key Research and Development Program of China 2018YFB0605101

Figures(12)

  • The spent fluid catalytic cracking (SFCC) catalysts were activated by an "internal instant vaporization (ⅡV)" method and used in the removal of Hg0 from a simulated flue gas in a fixed bed reactor; the effect of various operation parameters such as the SFCC activation conditions, adsorption temperature, and flue gas components on the Hg0 removal efficiency was investigated. The results indicate that the SFCC catalyst activated with methanol or ethanol performs adequately in terms of Hg0 removal, whilst the calcination temperature also has a great influence on the activation of the SFCC catalyst. O2 in the flue gas favors the Hg0 removal, whilst NO facilitates the oxidation of mercury and displays a positive effect on the mercury removal in the presence of O2, accompanying with the formation of N-containing active species on the activated SFCC catalyst surface. SO2 in the flue gas, depending on its concentration, may exert the effect of catalytic adsorption or competitive adsorption on the Hg0 removal. Approximately 100% Hg0 can be removed in the stream of 6% O2, 12% CO2 and 0.06% NO at 120 ℃ by using the activated SFCC catalyst with ethanol as an organic solvent and calcined at 120 ℃, suggesting that the spent FCC catalysts after activation can be a potential adsorbent for the removal of Hg0 from the coal-fired flue gas.
  • 加载中
    1. [1]

      CHEN Y, GUO X, FAN W. Development and evaluation of magnetic iron-carbon sorbents for mercury removal in coal combustion flue gas[J]. J Energy Inst, 2020,93(4):1615-1623.

    2. [2]

      UNEP, UNEP publishes 2018 global mercury assessment[R]. UN Environment Programme, Chemicals and Health Branch Geneva, Switzerland, 2019.

    3. [3]

      XIE X, AI H S, DENG Z G. Impacts of the scattered coal consumption on PM2.5 pollution in China[J]. J Clean Prod, 2020,245118922.

    4. [4]

      LIU T, XUE L C, GUO X. Study of Hg0 removal characteristics on Fe2O3 with H2S[J]. Fuel, 2015,160:189-195.

    5. [5]

      GB/13223—2011, Emission standard of air pollutants for thermal power plants[S].

    6. [6]

      WU S J, YAN P J, YU W S, CHENG K, WANG H, YANG W, ZHOU J, XI J H, QIU J H, ZHU S X, CHE L. Efficient removal of mercury from flue gases by regenerable cerium-doped functional activated carbon derived from resin made by in situ ion exchange method[J]. Fuel Process Technol, 2019,196106167.

    7. [7]

      WU C L, CAO Y, DONG Z B, CHENG C M, LI H X, PAN W P. Evaluation of mercury speciation and removal through air pollution control devices of a 190 MW boiler[J]. J Environ Sci, 2010,22:277-282.

    8. [8]

      LEE SS, LEE J Y, KEENER T C. Bench-scale studies of in-duct mercury capture using cupric chloride-impregnated carbons[J]. Environ Sci Technol, 2009,43:2957-2962.

    9. [9]

      MEI Z J, SHEN ZM, ZHAO Q J, WANG W H, ZHANG Y J. Removal and recovery of gas-phase element mercury by metal oxide-loaded activated carbon[J]. J Hazard Mater, 2008,152:721-729.

    10. [10]

      YANG J P, ZHAO Y C, ZHANG J Y, ZHENG C G. Removal of elemental mercury from flflue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash. Part 1. analyst characterization and performance evaluation[J]. Fuel, 2016,164:419-428.

    11. [11]

      WANG Y J, DUAN Y F. Effect of manganese ions on the structure of Ca(OH)2 and mercury adsorption performance of Mnx+/Ca(OH)2 composites[J]. Energy Fuels, 2011,25:1553-1558.

    12. [12]

      LIU H, YANG J P, TIAN C, ZHAO Y C, ZHANG JY. Mercury removal from coal combustion flue gas by modified palygorskite adsorbents[J]. Appl Clay Sci, 2017:36-43.

    13. [13]

      YANG J P, ZHU W B, QU W Q, YANG Z Q, ZHAO J X, WANG J, ZHANG M G, LI H L. Selenium functionalized metal-organic framework MIL-101 for efficient and permanent sequestration of mercury[J]. Environ Sci Technol, 2019,53:2206-2268.

    14. [14]

      YANG Z Q, LI H L, QU W Q, ZHANG M G, FENG Y, ZHAO J X, YANG J P, SHI K M. Role of sulfur trioxide (SO3) in gas-phase elemental mercury immobilization by mineral sulfide[J]. Environ Sci Technol, 2019,53:3250-3257.

    15. [15]

      LI H L, ZHU W B, YANG J P, ZHANG M G, ZHAO J X, QU W Q. Sulfur abundant S/FeS2 for efficient removal of mercury from coal-fired power plants[J]. Fuel, 2018,232:476-484.

    16. [16]

      LIU H, ZHAO Y, ZHOU Y M, ZHANG J Y. Removal of gaseous elemental mercury by modified diatomite[J]. Sci Total Environ, 2019,652:651-659.

    17. [17]

      JOHNSON E B G, ARSHAD S E B. Arshad. Hydrothermally synthesized zeolites based on kaolinite: A review[J]. Appl Clay Sci, 2014:97-221.

    18. [18]

      ADITYA B, ANJANI S. Catalyst demand growth projected at 1.1% through 2040[J]. Huston. Stradv, 2019: 1-2 (2020-02-10) https: //stratasadvisors.com/insights/2019/030119-catalyst-market-outlook.

    19. [19]

      VUYYURU K, PANT KK, KRISHNANV V, NIGAM K D P. Recovery of nickel from spent industrial catalysts using chelating agents[J]. Ind Eng Chem Res, 2010,49:2014-2024.

    20. [20]

      HUANG Y Y, CHEN X P, DENG Y F, ZHOU D, WANG L L. A novel nickel catalyst derived from layered double hydroxides(LDHs) supported on fluid catalytic cracking catalyst residue(FC3R) for rosin hydrogenation[J]. Chem Eng J, 2015,269:434-443.

    21. [21]

      FERELLA F, LENOE S, INNOCENZI V, MICHELIS I D, TAGLIERI G, GALLUCCI K. Synthesis of zeolites from spent fluid catalytic cracking catalyst[J]. JClean Prod, 2019,230:910-926.

    22. [22]

      YUAN L, QIU Z F, YUAN L, TARIQ M, LU Y Q, YANG J, LI Z, LYU S G. Adsorption and mechanistic study for phosphate removal by magnetic Fe3O4-doped spent FCC catalysts adorbent[J]. Chemosphere, 2019,219:183-190.

    23. [23]

      LIU H, CHANG L, LIU W J, XIONG Z, ZHAO Y C, ZHANG J Y, ZHANG J Y. Advances in mercury removal from coal-fired flue gas by mineral adsorbents[J]. Chem Eng J, 2020,379122263.

    24. [24]

      RODRIGUEZE D, BERNAL SA, PROVIS J, GEHMAN J, MONZO J, PAYA J, BORRACHERO M V. Geopolymers based on spent catalyst residue from a fluid catalytic cracking (FCC) process[J]. Fuel, 2013,109:493-502.

    25. [25]

      DENG S, WANG H S, CHEN X P, WANG LL, LIANG J Z, ZHANG F. The preparation and application of a mercury adsorbent, CN, 201610524841.1[P]. 2016-07-05.

    26. [26]

      PAYA J, MONZO J, BORRACHERO M V, VELAZQUEZ S, BONILLA M. Determination of the pozzolanic activity of fluid catalytic cracking residue. Thermogravimetric analysis studies on FC3R-lime pastes[J]. Cement Concrete Res, 2003,33:1085-1091.

    27. [27]

      MA L J, HAN L N, CHEN S, HU J L, CHANG L Q, BAO W R, WANG J C. Rapid synthesis of magnetic zeolite materials from fly ash and iron-containing wastes using supercritical water for elemental mercury removal from flue gas[J]. Fuel Process Technol, 2019,189:39-48.

    28. [28]

      ZHANG Z, WU J, LI B, XU H B, LIU D J. Removal of elemental mercury from simulated flue gas by ZSM-5 modified with Mn-Fe mixed oxides[J]. Chem Eng J, 2019,375121946.

    29. [29]

      LI H H, WANG Y, WANG S K, WANG X, HU JJ. Removal of elemental mercury in flue gas at lower temperatures over Mn-Ce based materials prepared by co-precipitation[J]. Fuel, 2017,208:576-586.

    30. [30]

      HE C, SHEN B X, LI FK. Effects of flue gas components on removal of elemental mercury over Ce-MnOx/Ti-PILCs[J]. J Hazard Mater, 2016,304:10-17.

    31. [31]

      LU G J, LU X Y, LIU P. Recovery of rare earth elements from spent fluid catalytic cracking catalyst using hydrogen peroxide as a reductant[J]. Miner Eng, 2020,145106104.

    32. [32]

      SHI M T, LUO G Q, XU Y, ZOU R J, ZHU H L, HU J Y, LI X, YAO H. Using H2S plasma to modify activated carbon for elemental mercury removal[J]. Fuel, 2019,254115549.

    33. [33]

      SUN R Z, ZHU H L, SHI M T, LUO G Q. Preparation of fly ash adsorbents utilizing non-thermal plasma to add S active sites for Hg0 removal from flue gas[J]. Fuel, 2020,266116936.

    34. [34]

      DONG L, HUANG Y J, LIU L Q, LIU C Q, XU L G, ZHA J R, CHEN H, LIU H. Investigation of elemental mercury removal from coal-fired boiler flue gas over MIL101-Cr[J]. Energy Fuels, 2019,33:8864-8875.

    35. [35]

      SHEN F H, LIU J, WU D W, DONG Y C, LIU F, HUANG H. Design of O2/SO2 dual-doped porous carbon as superior sorbent for elemental mercury removal from flue gas[J]. J Hazard Mater, 2019,366:321-328.

    36. [36]

      TONG L, XU W Q, ZHOU X, LIU R H. Effects of multi-component flue gases on Hg0 removal over HNO3-modified activated carbon[J]. Energy Fuels, 2015,29:5231-5236.

    37. [37]

      LI H L, WU C Y, LI Y, LI L Q, ZHAO Y C, ZHANG J Y. Impact of SO2 on elemental mercury oxidation over CeO2-TiO2 catalyst[J]. ChemEng J, 2013,219:319-326.

    38. [38]

      ZHOU C S, SUN L S, ZHANG A C, MA C, WANG B, YU J, SU S, HU S, XIANG J. Elemental mercury (Hg0) removal from containing SO2/NO flue gas by magnetically separable Fe2.45Ti0. 55O4/H2O2, advanced oxidation processes[J]. Chem Eng J, 2015,273:381-389.

    39. [39]

      LIUR H, XU W Q, TONG L, ZHU T Y. Role of NO in Hg0 oxidation over a commercial selective catalytic reduction catalyst V2O5-WO3/TiO2[J]. J Environ Sci, 2015,38:126-132.

    40. [40]

      YANG Y J, MIAO S, LIU J, WANG Z, YU YN. Cost-effective manganese ore sorbent for elemental mercury removal from flue gas[J]. Environ Sci Technol, 2019,53:9957-9965.

    41. [41]

      LUO Z K, DUAN Y F, HUANG T F, LIU S, HUANG Y J, DONG L, REN S J, TAO J, GU X B. Emission and migration characteristics of mercury in a 0.3 MWth CFB Boiler with ammonium bromide-modified rice husk char injection into flue[J]. Energy Fuels, 2019,33:7578-7586.

    42. [42]

      RUMAYOR M, DIAZ-SOMOANO M, LOPEZ-ANTON M A, OCHOA-GONZALEZ R, MARTINEZ-TARAZONA M R. Temperature programmed desorption as a tool for the identification of mercury fate in wet-desulphurization systems[J]. Fuel, 2015,148:98-103.

  • 加载中
    1. [1]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    2. [2]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    3. [3]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    4. [4]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    5. [5]

      Yu YaoJinqiang ZhangYantao WangKunsheng HuYangyang YangZhongshuai ZhuShuang ZhongHuayang ZhangShaobin WangXiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633

    6. [6]

      Xin LiJia-Min LuBo LiChen ZhaoBei-Bei YangLi Li . Chiroptical sensing for remote chiral amines via a C–H activation reaction. Chinese Chemical Letters, 2025, 36(5): 110310-. doi: 10.1016/j.cclet.2024.110310

    7. [7]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    8. [8]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    9. [9]

      Ruonan GuoHeng ZhangChangsheng GuoNingqing LvBeidou XiJian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413

    10. [10]

      Qiuyun LiYannan ZhuYining WangGang QiWen-Juan HaoKelu YanBo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494

    11. [11]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    12. [12]

      Lin LiBingjun SunJin SunLin ChenZhonggui He . Binary prodrug nanoassemblies combining chemotherapy and ferroptosis activation for efficient triple-negative breast cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109538-. doi: 10.1016/j.cclet.2024.109538

    13. [13]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

    14. [14]

      Chao ChenWenwen YuGuangen HuangXuelian RenXiangli ChenYixin LiShenggui LiangMengmeng XuMingyue ZhengYaxi YangHe HuangWei TangBing Zhou . Asymmetric macrocyclization enabled by Rh(Ⅲ)-catalyzed CH activation: Enantioenriched macrocyclic inhibitor of Zika virus infection. Chinese Chemical Letters, 2024, 35(11): 109574-. doi: 10.1016/j.cclet.2024.109574

    15. [15]

      Ruru LiQian LiuHui LiFengbin SunZhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679

    16. [16]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    17. [17]

      Mengmeng AoJian WeiChuan-Shu HeHeng ZhangZhaokun XiongYonghui SongBo Lai . Insight into the activation of peroxymonosulfate by N-doped copper-based carbon for efficient degradation of organic pollutants: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(1): 109882-. doi: 10.1016/j.cclet.2024.109882

    18. [18]

      Shuang LiangJianjun YaoDan LiuMengli ZhouYong CuiZhaohui Wang . Tumor-responsive covalent organic polymeric nanoparticles enhancing STING activation for cancer immunotherapy. Chinese Chemical Letters, 2025, 36(3): 109856-. doi: 10.1016/j.cclet.2024.109856

    19. [19]

      Shukun LePeng WangYuhao LiuMutao XuQuansheng LiuQijie JinJie MiaoChengzhang ZhuHaitao Xu . High-efficiency Fe(Ⅲ)-doped ultrathin VO2 nanobelts boosted peroxydisulfate activation for actual antibiotics photodegradation. Chinese Chemical Letters, 2025, 36(3): 110087-. doi: 10.1016/j.cclet.2024.110087

    20. [20]

      Yanjun CaiYong JiangYu ChenErzhuo ChengYuan GuYuwei LiQianqian LiuJian ZhangJifang LiuShisong HanBin Yang . Amplifying STING activation and immunogenic cell death by metal-polyphenol coordinated nanomedicines for enhanced cancer immunotherapy. Chinese Chemical Letters, 2025, 36(5): 110437-. doi: 10.1016/j.cclet.2024.110437

Metrics
  • PDF Downloads(1)
  • Abstract views(608)
  • HTML views(126)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return