Removal of Hg0 from simulated coal-fired flue gas by using activated spent FCC catalysts
- Corresponding author: DENG Shuang, dengshuang@craes.org.cn
Citation:
WANG Hua-sheng, REN Yan-jun, DENG Shuang, HUANG Jia-yu, GUO Feng-yan, TIAN Gang. Removal of Hg0 from simulated coal-fired flue gas by using activated spent FCC catalysts[J]. Journal of Fuel Chemistry and Technology,
;2020, 48(12): 1466-1475.
CHEN Y, GUO X, FAN W. Development and evaluation of magnetic iron-carbon sorbents for mercury removal in coal combustion flue gas[J]. J Energy Inst, 2020,93(4):1615-1623.
UNEP, UNEP publishes 2018 global mercury assessment[R]. UN Environment Programme, Chemicals and Health Branch Geneva, Switzerland, 2019.
XIE X, AI H S, DENG Z G. Impacts of the scattered coal consumption on PM2.5 pollution in China[J]. J Clean Prod, 2020,245118922.
LIU T, XUE L C, GUO X. Study of Hg0 removal characteristics on Fe2O3 with H2S[J]. Fuel, 2015,160:189-195.
GB/13223—2011, Emission standard of air pollutants for thermal power plants[S].
WU S J, YAN P J, YU W S, CHENG K, WANG H, YANG W, ZHOU J, XI J H, QIU J H, ZHU S X, CHE L. Efficient removal of mercury from flue gases by regenerable cerium-doped functional activated carbon derived from resin made by in situ ion exchange method[J]. Fuel Process Technol, 2019,196106167.
WU C L, CAO Y, DONG Z B, CHENG C M, LI H X, PAN W P. Evaluation of mercury speciation and removal through air pollution control devices of a 190 MW boiler[J]. J Environ Sci, 2010,22:277-282.
LEE SS, LEE J Y, KEENER T C. Bench-scale studies of in-duct mercury capture using cupric chloride-impregnated carbons[J]. Environ Sci Technol, 2009,43:2957-2962.
MEI Z J, SHEN ZM, ZHAO Q J, WANG W H, ZHANG Y J. Removal and recovery of gas-phase element mercury by metal oxide-loaded activated carbon[J]. J Hazard Mater, 2008,152:721-729.
YANG J P, ZHAO Y C, ZHANG J Y, ZHENG C G. Removal of elemental mercury from flflue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash. Part 1. analyst characterization and performance evaluation[J]. Fuel, 2016,164:419-428.
WANG Y J, DUAN Y F. Effect of manganese ions on the structure of Ca(OH)2 and mercury adsorption performance of Mnx+/Ca(OH)2 composites[J]. Energy Fuels, 2011,25:1553-1558.
LIU H, YANG J P, TIAN C, ZHAO Y C, ZHANG JY. Mercury removal from coal combustion flue gas by modified palygorskite adsorbents[J]. Appl Clay Sci, 2017:36-43.
YANG J P, ZHU W B, QU W Q, YANG Z Q, ZHAO J X, WANG J, ZHANG M G, LI H L. Selenium functionalized metal-organic framework MIL-101 for efficient and permanent sequestration of mercury[J]. Environ Sci Technol, 2019,53:2206-2268.
YANG Z Q, LI H L, QU W Q, ZHANG M G, FENG Y, ZHAO J X, YANG J P, SHI K M. Role of sulfur trioxide (SO3) in gas-phase elemental mercury immobilization by mineral sulfide[J]. Environ Sci Technol, 2019,53:3250-3257.
LI H L, ZHU W B, YANG J P, ZHANG M G, ZHAO J X, QU W Q. Sulfur abundant S/FeS2 for efficient removal of mercury from coal-fired power plants[J]. Fuel, 2018,232:476-484.
LIU H, ZHAO Y, ZHOU Y M, ZHANG J Y. Removal of gaseous elemental mercury by modified diatomite[J]. Sci Total Environ, 2019,652:651-659.
JOHNSON E B G, ARSHAD S E B. Arshad. Hydrothermally synthesized zeolites based on kaolinite: A review[J]. Appl Clay Sci, 2014:97-221.
ADITYA B, ANJANI S. Catalyst demand growth projected at 1.1% through 2040[J]. Huston. Stradv, 2019: 1-2 (2020-02-10) https: //stratasadvisors.com/insights/2019/030119-catalyst-market-outlook.
VUYYURU K, PANT KK, KRISHNANV V, NIGAM K D P. Recovery of nickel from spent industrial catalysts using chelating agents[J]. Ind Eng Chem Res, 2010,49:2014-2024.
HUANG Y Y, CHEN X P, DENG Y F, ZHOU D, WANG L L. A novel nickel catalyst derived from layered double hydroxides(LDHs) supported on fluid catalytic cracking catalyst residue(FC3R) for rosin hydrogenation[J]. Chem Eng J, 2015,269:434-443.
FERELLA F, LENOE S, INNOCENZI V, MICHELIS I D, TAGLIERI G, GALLUCCI K. Synthesis of zeolites from spent fluid catalytic cracking catalyst[J]. JClean Prod, 2019,230:910-926.
YUAN L, QIU Z F, YUAN L, TARIQ M, LU Y Q, YANG J, LI Z, LYU S G. Adsorption and mechanistic study for phosphate removal by magnetic Fe3O4-doped spent FCC catalysts adorbent[J]. Chemosphere, 2019,219:183-190.
LIU H, CHANG L, LIU W J, XIONG Z, ZHAO Y C, ZHANG J Y, ZHANG J Y. Advances in mercury removal from coal-fired flue gas by mineral adsorbents[J]. Chem Eng J, 2020,379122263.
RODRIGUEZE D, BERNAL SA, PROVIS J, GEHMAN J, MONZO J, PAYA J, BORRACHERO M V. Geopolymers based on spent catalyst residue from a fluid catalytic cracking (FCC) process[J]. Fuel, 2013,109:493-502.
DENG S, WANG H S, CHEN X P, WANG LL, LIANG J Z, ZHANG F. The preparation and application of a mercury adsorbent, CN, 201610524841.1[P]. 2016-07-05.
PAYA J, MONZO J, BORRACHERO M V, VELAZQUEZ S, BONILLA M. Determination of the pozzolanic activity of fluid catalytic cracking residue. Thermogravimetric analysis studies on FC3R-lime pastes[J]. Cement Concrete Res, 2003,33:1085-1091.
MA L J, HAN L N, CHEN S, HU J L, CHANG L Q, BAO W R, WANG J C. Rapid synthesis of magnetic zeolite materials from fly ash and iron-containing wastes using supercritical water for elemental mercury removal from flue gas[J]. Fuel Process Technol, 2019,189:39-48.
ZHANG Z, WU J, LI B, XU H B, LIU D J. Removal of elemental mercury from simulated flue gas by ZSM-5 modified with Mn-Fe mixed oxides[J]. Chem Eng J, 2019,375121946.
LI H H, WANG Y, WANG S K, WANG X, HU JJ. Removal of elemental mercury in flue gas at lower temperatures over Mn-Ce based materials prepared by co-precipitation[J]. Fuel, 2017,208:576-586.
HE C, SHEN B X, LI FK. Effects of flue gas components on removal of elemental mercury over Ce-MnOx/Ti-PILCs[J]. J Hazard Mater, 2016,304:10-17.
LU G J, LU X Y, LIU P. Recovery of rare earth elements from spent fluid catalytic cracking catalyst using hydrogen peroxide as a reductant[J]. Miner Eng, 2020,145106104.
SHI M T, LUO G Q, XU Y, ZOU R J, ZHU H L, HU J Y, LI X, YAO H. Using H2S plasma to modify activated carbon for elemental mercury removal[J]. Fuel, 2019,254115549.
SUN R Z, ZHU H L, SHI M T, LUO G Q. Preparation of fly ash adsorbents utilizing non-thermal plasma to add S active sites for Hg0 removal from flue gas[J]. Fuel, 2020,266116936.
DONG L, HUANG Y J, LIU L Q, LIU C Q, XU L G, ZHA J R, CHEN H, LIU H. Investigation of elemental mercury removal from coal-fired boiler flue gas over MIL101-Cr[J]. Energy Fuels, 2019,33:8864-8875.
SHEN F H, LIU J, WU D W, DONG Y C, LIU F, HUANG H. Design of O2/SO2 dual-doped porous carbon as superior sorbent for elemental mercury removal from flue gas[J]. J Hazard Mater, 2019,366:321-328.
TONG L, XU W Q, ZHOU X, LIU R H. Effects of multi-component flue gases on Hg0 removal over HNO3-modified activated carbon[J]. Energy Fuels, 2015,29:5231-5236.
LI H L, WU C Y, LI Y, LI L Q, ZHAO Y C, ZHANG J Y. Impact of SO2 on elemental mercury oxidation over CeO2-TiO2 catalyst[J]. ChemEng J, 2013,219:319-326.
ZHOU C S, SUN L S, ZHANG A C, MA C, WANG B, YU J, SU S, HU S, XIANG J. Elemental mercury (Hg0) removal from containing SO2/NO flue gas by magnetically separable Fe2.45Ti0. 55O4/H2O2, advanced oxidation processes[J]. Chem Eng J, 2015,273:381-389.
LIUR H, XU W Q, TONG L, ZHU T Y. Role of NO in Hg0 oxidation over a commercial selective catalytic reduction catalyst V2O5-WO3/TiO2[J]. J Environ Sci, 2015,38:126-132.
YANG Y J, MIAO S, LIU J, WANG Z, YU YN. Cost-effective manganese ore sorbent for elemental mercury removal from flue gas[J]. Environ Sci Technol, 2019,53:9957-9965.
LUO Z K, DUAN Y F, HUANG T F, LIU S, HUANG Y J, DONG L, REN S J, TAO J, GU X B. Emission and migration characteristics of mercury in a 0.3 MWth CFB Boiler with ammonium bromide-modified rice husk char injection into flue[J]. Energy Fuels, 2019,33:7578-7586.
RUMAYOR M, DIAZ-SOMOANO M, LOPEZ-ANTON M A, OCHOA-GONZALEZ R, MARTINEZ-TARAZONA M R. Temperature programmed desorption as a tool for the identification of mercury fate in wet-desulphurization systems[J]. Fuel, 2015,148:98-103.
Xiangyang Ji , Yishuang Chen , Peng Zhang , Shaojia Song , Jian Liu , Weiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719
Shuo Li , Xinran Liu , Yongjie Zheng , Jun Ma , Shijie You , Heshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971
Zixuan Guo , Xiaoshuai Han , Chunmei Zhang , Shuijian He , Kunming Liu , Jiapeng Hu , Weisen Yang , Shaoju Jian , Shaohua Jiang , Gaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007
Cunjun Li , Wencong Liu , Xianlei Chen , Liang Li , Shenyu Lan , Mingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652
Yu Yao , Jinqiang Zhang , Yantao Wang , Kunsheng Hu , Yangyang Yang , Zhongshuai Zhu , Shuang Zhong , Huayang Zhang , Shaobin Wang , Xiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633
Xin Li , Jia-Min Lu , Bo Li , Chen Zhao , Bei-Bei Yang , Li Li . Chiroptical sensing for remote chiral amines via a C–H activation reaction. Chinese Chemical Letters, 2025, 36(5): 110310-. doi: 10.1016/j.cclet.2024.110310
Chunxiu Yu , Zelin Wu , Hongle Shi , Lingyun Gu , Kexin Chen , Chuan-Shu He , Yang Liu , Heng Zhang , Peng Zhou , Zhaokun Xiong , Bo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334
Yinyin Xu , Yuanyuan Li , Jingbo Feng , Chen Wang , Yan Zhang , Yukun Wang , Xiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838
Ruonan Guo , Heng Zhang , Changsheng Guo , Ningqing Lv , Beidou Xi , Jian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413
Qiuyun Li , Yannan Zhu , Yining Wang , Gang Qi , Wen-Juan Hao , Kelu Yan , Bo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494
Boqiang Wang , Yongzhuo Xu , Jiajia Wang , Muyang Yang , Guo-Jun Deng , Wen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502
Lin Li , Bingjun Sun , Jin Sun , Lin Chen , Zhonggui He . Binary prodrug nanoassemblies combining chemotherapy and ferroptosis activation for efficient triple-negative breast cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109538-. doi: 10.1016/j.cclet.2024.109538
Xiaotao Jin , Yanlan Wang , Yingping Huang , Di Huang , Xiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499
Chao Chen , Wenwen Yu , Guangen Huang , Xuelian Ren , Xiangli Chen , Yixin Li , Shenggui Liang , Mengmeng Xu , Mingyue Zheng , Yaxi Yang , He Huang , Wei Tang , Bing Zhou . Asymmetric macrocyclization enabled by Rh(Ⅲ)-catalyzed CH activation: Enantioenriched macrocyclic inhibitor of Zika virus infection. Chinese Chemical Letters, 2024, 35(11): 109574-. doi: 10.1016/j.cclet.2024.109574
Ruru Li , Qian Liu , Hui Li , Fengbin Sun , Zhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679
Yunkang Tong , Haiqiao Huang , Haolan Li , Mingle Li , Wen Sun , Jianjun Du , Jiangli Fan , Lei Wang , Bin Liu , Xiaoqiang Chen , Xiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663
Mengmeng Ao , Jian Wei , Chuan-Shu He , Heng Zhang , Zhaokun Xiong , Yonghui Song , Bo Lai . Insight into the activation of peroxymonosulfate by N-doped copper-based carbon for efficient degradation of organic pollutants: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(1): 109882-. doi: 10.1016/j.cclet.2024.109882
Shuang Liang , Jianjun Yao , Dan Liu , Mengli Zhou , Yong Cui , Zhaohui Wang . Tumor-responsive covalent organic polymeric nanoparticles enhancing STING activation for cancer immunotherapy. Chinese Chemical Letters, 2025, 36(3): 109856-. doi: 10.1016/j.cclet.2024.109856
Shukun Le , Peng Wang , Yuhao Liu , Mutao Xu , Quansheng Liu , Qijie Jin , Jie Miao , Chengzhang Zhu , Haitao Xu . High-efficiency Fe(Ⅲ)-doped ultrathin VO2 nanobelts boosted peroxydisulfate activation for actual antibiotics photodegradation. Chinese Chemical Letters, 2025, 36(3): 110087-. doi: 10.1016/j.cclet.2024.110087
Yanjun Cai , Yong Jiang , Yu Chen , Erzhuo Cheng , Yuan Gu , Yuwei Li , Qianqian Liu , Jian Zhang , Jifang Liu , Shisong Han , Bin Yang . Amplifying STING activation and immunogenic cell death by metal-polyphenol coordinated nanomedicines for enhanced cancer immunotherapy. Chinese Chemical Letters, 2025, 36(5): 110437-. doi: 10.1016/j.cclet.2024.110437