Citation: LI Ting-ting, HUANG Yan-qin, LIU Hua-cai, YUAN Hong-you, YIN Xiu-li, WU Chuang-zhi. Effects of paper mill residual additives on sintering and melting characteristic of wheat straw[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(11): 1323-1331. shu

Effects of paper mill residual additives on sintering and melting characteristic of wheat straw

  • Corresponding author: HUANG Yan-qin, huangyq@ms.giec.ac.cn
  • Received Date: 16 May 2017
    Revised Date: 16 August 2017

    Fund Project: the Science and Technology Support Program of Guangdong Province, China 2016A010104011the National Key Research and Devetopment Program of China 2016YFE0203300the National Natural Science Foundation of China 51661145022The project was supported by the National Natural Science Foundation of China (51661145022), the National Key Research and Devetopment Program of China(2016YFE0203300) and the Science and Technology Support Program of Guangdong Province, China(2016A010104011)

Figures(4)

  • The effects of paper mill residues (delinking sludge, paper mill sludge, municipal sewage sludge) addition on slagging tendency of wheat straw were investigated using ash melting point test system, X-ray fluorescence (XRF) and powder X-ray diffraction (XRD). The differences between other 4 common additives were also discussed. The results show that addition of delinking sludge and paper mill sludge behaves better than municipal sewage sludge in blending range of 3% to 10%, while softening temperature of wheat ash tends to get the highest value when adding 5% paper mill sludge. Along with the blends increasing, Al2O3 plays an important framework structure modification role while adding paper mill sludge. While generation of feldspar such as orthoclase and anorthite takes place, the softening temperature decreases. In addition, silicon aluminum garnet is more likely to form to enhance the fusion characteristic temperate while adding delinking sludge. On the contrary, formation of high melting point material(CaSiO3)inhibits low melting silicate by adding paper mill sludge. Components analyses indicate that crystal structure of SiO2 is changed along with municipal sludge added. Sludge used as anti-slagging additives is promising.
  • 加载中
    1. [1]

      WANG L, SKREIBERG O, BECIDAN M, LI H L. Investigation of rye straw ash sintering characteristics and the effect of additives[J]. Appl Energy, 2016,162:1195-1204. doi: 10.1016/j.apenergy.2015.05.027

    2. [2]

      WANG L, BECIDAN M, SKREIBERG O. Sintering behavior of agricultural residues ashes and effects of additives[J]. Energy Fuels, 2012,26(9):5917-5929. doi: 10.1021/ef3004366

    3. [3]

      STEENARI B M, LINDQVIST O. High-temperature reactions of straw ash and the anti-sintering additives kaolin and dolomite[J]. Biomass Bioenergy, 1998,14(1):67-76. doi: 10.1016/S0961-9534(97)00035-4

    4. [4]

      OHMAN M, NORDIN A, LUNDHOLM K, BOSTROM D, HEDMAN H, LUNDBERG M. Ash transformations during combustion of meat-, bonemeal, and RDF in a (bench-scale) fluidized bed combustor[J]. Energy Fuels, 2003,17(5):1153-1159. doi: 10.1021/ef020273a

    5. [5]

      QI J H, LI H, HAN K H, ZUO Q, GAO J, WANG Q, LU C M. Influence of ammonium dihydrogen phosphate on potassium retention and ash melting characteristics during combustion of biomass[J]. Energy, 2016,102:244-251. doi: 10.1016/j.energy.2016.02.090

    6. [6]

      GRIMM A, SKOGLUND N, BOSTROM D, BOMAN C, OHMAN M. Influence of phosphorus on alkali distribution during combustion of logging residues and wheat straw in a bench-scale fluidized bed[J]. Energy Fuels, 2012,26(5):3012-3023. doi: 10.1021/ef300275e

    7. [7]

      LI H, HAN K H, WANG Q, LU C M. Influence of ammonium phosphates on gaseous potassium release and ash-forming characteristics during combustion of biomass[J]. Energy Fuels, 2015,29(4):2555-63. doi: 10.1021/acs.energyfuels.5b00285

    8. [8]

      XIA Han-yuan, YUAN Hong-you, WANG Gui-jin, ZHOU Zhao-qiu, SU De-ren, YANG Qing, YIN Xiu-li. Experimental study on pyrolysis and gasification characteristics of deinking sludge[J]. Paper Sci Technol, 2012,3:88-92.

    9. [9]

      FERREIRA C I A, CALISTO V, CUERDA-CORREA E M, OTERO M, NADAIS H, ESTEVES V I. Comparative valorisation of agricultural and industrial biowastes by combustion and pyrolysis[J]. Bioresour Technol, 2016,218:918-925. doi: 10.1016/j.biortech.2016.07.047

    10. [10]

      SKOGLUND N, GRIMM A, OHMAN M, BOSTROM D. Effects on ash chemistry when co-firing municipal sewage sludge and wheat straw in a fluidized bed:Influence on the ash chemistry by fuel mixing[J]. Energy Fuels, 2013,27(10):5725-5732. doi: 10.1021/ef401197q

    11. [11]

      WANG L, SKJEVRAK G, HUSTAD J E, GRONLI M G. Effects of sewage sludge and marble sludge addition on slag characteristics during wood waste pellets combustion[J]. Energy Fuels, 2011,25(12):5775-5785. doi: 10.1021/ef2007722

    12. [12]

      DAVIDSSON K O, AMAND L E, ELLED A L, LECKNER B. Effect of cofiring coal and biofuel with sewage sludge on alkali problems in a circulating fluidized bed boiler[J]. Energy Fuels, 2007,21(6):3180-3188. doi: 10.1021/ef700384c

    13. [13]

      HUPA M. Ash-related issues in fluidized-bed combustion of biomasses:recent research highlights[J]. Energy Fuels, 2012,26(1):4-14. doi: 10.1021/ef201169k

    14. [14]

      BROSTROM M, KASSMAN H, HELGESSON A, BERG M, ANDERSSON C, BACKMAN R, NORDIN A. Sulfation of corrosive alkali chlorides by ammonium sulfate in a biomass fired CFB boiler[J]. Fuel Process Technol, 2007,88(11/12):1171-1177.

    15. [15]

      LI L N, REN Q Q, LI S Y, LU Q G. Effect of phosphorus on the behavior of potassium during the co-combustion of wheat straw with municipal sewage sludge[J]. Energ Fuels, 2013,27(10):5923-5930. doi: 10.1021/ef401196y

    16. [16]

      ARING , MAND L E, LECKNER B, ESKILSSON D, TULLIN C. Deposits on heat transfer tubes during co-combustion of biofuels and sewage sludge[J]. Fuel, 2006,85(10/11):1313-1322.

    17. [17]

      NIU Y Q, TAN H. Z, HUI S E. Ash-related issues during biomass combustion:Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures[J]. Prog Energy Combust Sci, 2016,52:1-61. doi: 10.1016/j.pecs.2015.09.003

    18. [18]

      GILBE C, LINDSTROM E, BACKMAN R, SAMUELSSON R, BURVALL J, OHMAN M. Predicting slagging tendencies for biomass pellets fired in residential appliances:A comparison of different prediction methods[J]. Energy Fuels, 2008,22(6):3680-3686. doi: 10.1021/ef800321h

    19. [19]

      WANG S, JIANG X M, HAN X X, WANG H. Fusion characteristic study on seaweed biomass ash[J]. Energy Fuels, 2008,22(4):2229-2235. doi: 10.1021/ef800128k

    20. [20]

      NIU Yan-qing, TAN Hou-zhang, WANG Xue-bin, XU Tong-mo, LIU Zheng-ning, LIU Yang. Fusion characteristic of capsicum stalks ash[J]. Proc CSEE, 2011,11:68-72.  

    21. [21]

      PRIYANTO D E, UENO S, SATO N, KASAI H, TANOUE T, FUKUSHIMA H. Ash transformation by co-firing of coal with high ratios of woody biomass and effect on slagging propensity[J]. Fuel, 2016,174:172-179. doi: 10.1016/j.fuel.2016.01.072

    22. [22]

      MA T, FAN C G, HAO L F, LI S G, SONG W L, LI W G. Biomass-ash-induced agglomeration in a fluidized bed. Part 1:Experimental study on the effects of a gas atmosphere[J]. Energy Fuels, 2016,30(8):6395-6404. doi: 10.1021/acs.energyfuels.6b00164

    23. [23]

      LI Ting-ting, HUANG Yan-qin, YUAN Hong-you, LIU Hua-cai, YIN Xiu-li, WU Chuang-zhi. Characterization of sintering behavior of wheat straw ash based on capacitance test[J]. Acta Energi Sina, 2018, 34.

    24. [24]

      LI Wen, BAI Jin. Chemistry of Ash from Coal[M]. Beijing:Science Press, 2013, 84.

    25. [25]

      WANG L, SKJEVRAK G, HUSTAD J E, GRONLI M G. Sintering characteristics of sewage sludge ashes at elevated temperatures[J]. Fuel Process Technol, 2012,96:88-97. doi: 10.1016/j.fuproc.2011.12.022

    26. [26]

      BLÄSING M, ZINI M, MVLLER M. Influence of feedstock on the release of potassium, sodium, chlorine, sulfur, and phosphorus species during gasification of wood and biomass shells[J]. Energy Fuels, 2013,27(3):1439-1445. doi: 10.1021/ef302093r

    27. [27]

      WU H, CASTRO M, JENSEN P A, FRANDSEN F J, GLARBORG PETER DAM-JOHANSEN K, RØKKE M, LUNDTORP K. Release and transformation of inorganic elements in combustion of a high-phosphorus fuel[J]. Energy Fuels, 2011,25(7):2874-2886. doi: 10.1021/ef200454y

    28. [28]

      YUAN Yan-wen, ZHAO Li-xin, MENG Hai-bo, LIN Chong, TIAN Yi-shui. Effects comparison on anti-slagging additives of corn straw biomass pellet fuel[J]. Trans CSAE, 2010,11:251-255. doi: 10.3969/j.issn.1002-6819.2010.09.041

    29. [29]

      LI L N, REN Q Q, LI S Y, LU Q G. Effect of phosphorus on the behavior of potassium during the Co-combustion of wheat straw with municipal sewage sludge[J]. Energy Fuels, 2013,27(10):5923-5930. doi: 10.1021/ef401196y

    30. [30]

      LI H, HAN K H, WANG Q, LU C M. Pyrolysis of rice straw with ammonium dihydrogen phosphate:Properties and gaseous potassium release characteristics during combustion of the products[J]. Bioresour Technol, 2015,197:193-200. doi: 10.1016/j.biortech.2015.08.070

  • 加载中
    1. [1]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

    2. [2]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    3. [3]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    4. [4]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    5. [5]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    6. [6]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    7. [7]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    8. [8]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    9. [9]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    10. [10]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    11. [11]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    12. [12]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    13. [13]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    14. [14]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    15. [15]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    16. [16]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    17. [17]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    18. [18]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(0)
  • Abstract views(690)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return