Effects of paper mill residual additives on sintering and melting characteristic of wheat straw
- Corresponding author: HUANG Yan-qin, huangyq@ms.giec.ac.cn
Citation:
LI Ting-ting, HUANG Yan-qin, LIU Hua-cai, YUAN Hong-you, YIN Xiu-li, WU Chuang-zhi. Effects of paper mill residual additives on sintering and melting characteristic of wheat straw[J]. Journal of Fuel Chemistry and Technology,
;2017, 45(11): 1323-1331.
WANG L, SKREIBERG O, BECIDAN M, LI H L. Investigation of rye straw ash sintering characteristics and the effect of additives[J]. Appl Energy, 2016,162:1195-1204. doi: 10.1016/j.apenergy.2015.05.027
WANG L, BECIDAN M, SKREIBERG O. Sintering behavior of agricultural residues ashes and effects of additives[J]. Energy Fuels, 2012,26(9):5917-5929. doi: 10.1021/ef3004366
STEENARI B M, LINDQVIST O. High-temperature reactions of straw ash and the anti-sintering additives kaolin and dolomite[J]. Biomass Bioenergy, 1998,14(1):67-76. doi: 10.1016/S0961-9534(97)00035-4
OHMAN M, NORDIN A, LUNDHOLM K, BOSTROM D, HEDMAN H, LUNDBERG M. Ash transformations during combustion of meat-, bonemeal, and RDF in a (bench-scale) fluidized bed combustor[J]. Energy Fuels, 2003,17(5):1153-1159. doi: 10.1021/ef020273a
QI J H, LI H, HAN K H, ZUO Q, GAO J, WANG Q, LU C M. Influence of ammonium dihydrogen phosphate on potassium retention and ash melting characteristics during combustion of biomass[J]. Energy, 2016,102:244-251. doi: 10.1016/j.energy.2016.02.090
GRIMM A, SKOGLUND N, BOSTROM D, BOMAN C, OHMAN M. Influence of phosphorus on alkali distribution during combustion of logging residues and wheat straw in a bench-scale fluidized bed[J]. Energy Fuels, 2012,26(5):3012-3023. doi: 10.1021/ef300275e
LI H, HAN K H, WANG Q, LU C M. Influence of ammonium phosphates on gaseous potassium release and ash-forming characteristics during combustion of biomass[J]. Energy Fuels, 2015,29(4):2555-63. doi: 10.1021/acs.energyfuels.5b00285
XIA Han-yuan, YUAN Hong-you, WANG Gui-jin, ZHOU Zhao-qiu, SU De-ren, YANG Qing, YIN Xiu-li. Experimental study on pyrolysis and gasification characteristics of deinking sludge[J]. Paper Sci Technol, 2012,3:88-92.
FERREIRA C I A, CALISTO V, CUERDA-CORREA E M, OTERO M, NADAIS H, ESTEVES V I. Comparative valorisation of agricultural and industrial biowastes by combustion and pyrolysis[J]. Bioresour Technol, 2016,218:918-925. doi: 10.1016/j.biortech.2016.07.047
SKOGLUND N, GRIMM A, OHMAN M, BOSTROM D. Effects on ash chemistry when co-firing municipal sewage sludge and wheat straw in a fluidized bed:Influence on the ash chemistry by fuel mixing[J]. Energy Fuels, 2013,27(10):5725-5732. doi: 10.1021/ef401197q
WANG L, SKJEVRAK G, HUSTAD J E, GRONLI M G. Effects of sewage sludge and marble sludge addition on slag characteristics during wood waste pellets combustion[J]. Energy Fuels, 2011,25(12):5775-5785. doi: 10.1021/ef2007722
DAVIDSSON K O, AMAND L E, ELLED A L, LECKNER B. Effect of cofiring coal and biofuel with sewage sludge on alkali problems in a circulating fluidized bed boiler[J]. Energy Fuels, 2007,21(6):3180-3188. doi: 10.1021/ef700384c
HUPA M. Ash-related issues in fluidized-bed combustion of biomasses:recent research highlights[J]. Energy Fuels, 2012,26(1):4-14. doi: 10.1021/ef201169k
BROSTROM M, KASSMAN H, HELGESSON A, BERG M, ANDERSSON C, BACKMAN R, NORDIN A. Sulfation of corrosive alkali chlorides by ammonium sulfate in a biomass fired CFB boiler[J]. Fuel Process Technol, 2007,88(11/12):1171-1177.
LI L N, REN Q Q, LI S Y, LU Q G. Effect of phosphorus on the behavior of potassium during the co-combustion of wheat straw with municipal sewage sludge[J]. Energ Fuels, 2013,27(10):5923-5930. doi: 10.1021/ef401196y
ARING , MAND L E, LECKNER B, ESKILSSON D, TULLIN C. Deposits on heat transfer tubes during co-combustion of biofuels and sewage sludge[J]. Fuel, 2006,85(10/11):1313-1322.
NIU Y Q, TAN H. Z, HUI S E. Ash-related issues during biomass combustion:Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures[J]. Prog Energy Combust Sci, 2016,52:1-61. doi: 10.1016/j.pecs.2015.09.003
GILBE C, LINDSTROM E, BACKMAN R, SAMUELSSON R, BURVALL J, OHMAN M. Predicting slagging tendencies for biomass pellets fired in residential appliances:A comparison of different prediction methods[J]. Energy Fuels, 2008,22(6):3680-3686. doi: 10.1021/ef800321h
WANG S, JIANG X M, HAN X X, WANG H. Fusion characteristic study on seaweed biomass ash[J]. Energy Fuels, 2008,22(4):2229-2235. doi: 10.1021/ef800128k
NIU Yan-qing, TAN Hou-zhang, WANG Xue-bin, XU Tong-mo, LIU Zheng-ning, LIU Yang. Fusion characteristic of capsicum stalks ash[J]. Proc CSEE, 2011,11:68-72.
PRIYANTO D E, UENO S, SATO N, KASAI H, TANOUE T, FUKUSHIMA H. Ash transformation by co-firing of coal with high ratios of woody biomass and effect on slagging propensity[J]. Fuel, 2016,174:172-179. doi: 10.1016/j.fuel.2016.01.072
MA T, FAN C G, HAO L F, LI S G, SONG W L, LI W G. Biomass-ash-induced agglomeration in a fluidized bed. Part 1:Experimental study on the effects of a gas atmosphere[J]. Energy Fuels, 2016,30(8):6395-6404. doi: 10.1021/acs.energyfuels.6b00164
LI Ting-ting, HUANG Yan-qin, YUAN Hong-you, LIU Hua-cai, YIN Xiu-li, WU Chuang-zhi. Characterization of sintering behavior of wheat straw ash based on capacitance test[J]. Acta Energi Sina, 2018, 34.
LI Wen, BAI Jin. Chemistry of Ash from Coal[M]. Beijing:Science Press, 2013, 84.
WANG L, SKJEVRAK G, HUSTAD J E, GRONLI M G. Sintering characteristics of sewage sludge ashes at elevated temperatures[J]. Fuel Process Technol, 2012,96:88-97. doi: 10.1016/j.fuproc.2011.12.022
BLÄSING M, ZINI M, MVLLER M. Influence of feedstock on the release of potassium, sodium, chlorine, sulfur, and phosphorus species during gasification of wood and biomass shells[J]. Energy Fuels, 2013,27(3):1439-1445. doi: 10.1021/ef302093r
WU H, CASTRO M, JENSEN P A, FRANDSEN F J, GLARBORG PETER DAM-JOHANSEN K, RØKKE M, LUNDTORP K. Release and transformation of inorganic elements in combustion of a high-phosphorus fuel[J]. Energy Fuels, 2011,25(7):2874-2886. doi: 10.1021/ef200454y
YUAN Yan-wen, ZHAO Li-xin, MENG Hai-bo, LIN Chong, TIAN Yi-shui. Effects comparison on anti-slagging additives of corn straw biomass pellet fuel[J]. Trans CSAE, 2010,11:251-255. doi: 10.3969/j.issn.1002-6819.2010.09.041
LI L N, REN Q Q, LI S Y, LU Q G. Effect of phosphorus on the behavior of potassium during the Co-combustion of wheat straw with municipal sewage sludge[J]. Energy Fuels, 2013,27(10):5923-5930. doi: 10.1021/ef401196y
LI H, HAN K H, WANG Q, LU C M. Pyrolysis of rice straw with ammonium dihydrogen phosphate:Properties and gaseous potassium release characteristics during combustion of the products[J]. Bioresour Technol, 2015,197:193-200. doi: 10.1016/j.biortech.2015.08.070
Yu Peng , Jiawei Chen , Yue Yin , Yongjie Cao , Mochou Liao , Congxiao Wang , Xiaoli Dong , Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
Qianqian Zhong , Yucui Hao , Guotao Yu , Lijuan Zhao , Jingfu Wang , Jian Liu , Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
Zhongyan Cao , Youzhi Xu , Menghua Li , Xiao Xiao , Xianqiang Kong , Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017
Jing Wang , Pingping Li , Yuehui Wang , Yifan Xiu , Bingqian Zhang , Shuwen Wang , Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097
Xinyu Zhu , Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106
Ping Song , Nan Zhang , Jie Wang , Rui Yan , Zhiqiang Wang , Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
Ping Ye , Lingshuang Qin , Mengyao He , Fangfang Wu , Zengye Chen , Mingxing Liang , Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081
Simin Fang , Wei Huang , Guanghua Yu , Cong Wei , Mingli Gao , Guangshui Li , Hongjun Tian , Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
(a): WS-DS 1: KCl(28.4°); 2: AlPO4(26.6°); 3: KNO2(26.9°); 4: K2SO4(30.3°); 5: CaSO4(25.4°); 6: CaMgSi2O6(30.9°); 7: CaSiO3(30.0°); 8: CaMg(CO3)2(30.9°); 9: SiO2(ceosite)(28.9°); 10: Ca2MgSi2O7(31.2°); 11: KH2PO4(23.9°); 12: KNO3(29.4°) (b): WS-PWS 1: KCl(28.4°); 2: SiO2(quartz)(26.7°); 3: CaSiO3(30.0°); 4: CaMg(CO3)2(30.9°); 5: KNO2(26.9°); 6: K2MgSiO4(32.6°); 7: Ca2SiO4(32.9°); 8: SiO2(ceosite)(28.9°); 9: KAlSi3O8(26.7°); 10: Fe2SiO4(36.6°); 11: CaAl2Si2O8(28.6°); 12: AlPO4(21.0°); 13: KNO3(29.4°); 14: K2SO4(30.3°); 15: KHCO3(31.7°); 16: KPO3(26.1°); 17: KH2PO4(23.9°); 18: CaCO3(26.2°) (c): WS-MWS 1: KCl(28.4°); 2: SiO2(quartz)(26.7°); 3: AlPO4(26.6°); 4: KFe2(PO4)2(28.8°); 5: KAl3(OH)6(SO4)2(30.0°); 6: K2CO3(31.6°); 7: SiO2(cristobalite)(21.8°); 8: SiO2(ceosite)(28.9°); 9: MgSiP2(27.5°); 10: Ca3Al2Si3O12(34.7°); 11: KNO3(29.4°); 12: KAlSi2O6(27.3°); 13: K2Ca(SO4)3(27.3°); 14: Ca3Si3O9(27.1°)
(a): 1: KCl(28.4°); 2: SiO2(quartz)(26.7°); 3: SiO2(tridymite)(29.9°); 4: KNO3(29.4°); 5: K2SO4(30.3°); 6: KClO3(26.1°); 7: Ca3Al2Si3O12(34.3°); 8: Ca3Mg(SiO4)2(33.6°); 9: AlPO4(26.7°); 10: KAlSiO4(21.9°); 11: SiO2(20.9°); 12: Ca3SiO5(31.3°); 13: KAlSiO8(21.4°); 14: CaAl2Si2O8(26.8°); 15: CaAl2O4(35.6°) (b): 1: KCl(28.4°); 2: SiO2(quartz)(26.7°); 3: SiO2(cristobalite)(21.8°); 4: KNO3(29.4°); 5: K2Ca(CO3)2(27.9°); 6: K3P(31.5°); 7: KAlSi2O6(26.3°); 8: K2SO4(30.3°); 9: KPO3(25.6°); 10: CaMgSi(33.3°); 11: CaSiO3(30.0°); 12: Ca2MgSi2O7(31.2°); 13: Mg2SiO4(36.3°); 14: K2Si2O5(31.8°); 15: KH2PO4(23.9°); 16: SiO2(coesite)(28.9°); 17: KAlSi2O6(27.3°); 18: AlPO4(21.0°); 19: CaAl2Si2O8(26.8°); 20: CaAl2O4(35.6°); 21: Ca2SiO4(32.4°)