Citation: Xu Tianqi, Yin Fangfei, Zhang Xiaohua, Zuo Xiaolei. Sequencing-Free Detection of Single Nucleotide Polymorphism[J]. Chemistry, ;2020, 83(6): 497-507. shu

Sequencing-Free Detection of Single Nucleotide Polymorphism

Figures(5)

  • Single nucleotide polymorphism (SNP) is vastly prevalent in genome mutations, which has been proved to be highly associated with various types of diseases. While sequencing detection plays a vital part in SNP detection, its dependence on equipment and time consumption confines the clinical application. This review focuses on sequencing-free detection of SNP. Thermodynamic aspects are first discussed, followed by major detection strategies:hybridization-based detection, strand displacement reaction, and enzyme-mediated detection. Three categories of detection methods are then elucidated. In three-dimensional homogeneous detection, signal switch strategies such as fluorophore switch, enzyme recognition switch, and field effect switch are elaborated. Three-dimentional detection in situ provides the location of SNP in addition to its presence, showing advantages in SNP detection in heterogeneous cells. In two-dimensional interface detection, despite the compromised reaction rate and hybridization efficiency, the nature of chip detection facilitates multiplexed detection as well as minimized interferences. Corrected chips like DNA tetrahedron-structured probes (TSP) show optimized detection sensitivity and specificity. Setbacks and further research directions in the field are also discussed.
  • 加载中
    1. [1]

      Brookes A J. Gene, 1999, 234(2): 177~186. 

    2. [2]

      Sanda S, Wei S, Rue T, et al. Acta Diabetol., 2013, 50(3): 459~462. 

    3. [3]

      Penas-Steinhardt A, Tellechea M L, Gomez-Rosso L, et al. BMC Med. Genet., 2011, 12: 166. 

    4. [4]

      Kim D H, Park S E, Kim M, et al. Cancer, 2011, 117(17): 4080~4091. 

    5. [5]

      Gong J, Tian J, Lou J, et al. Ann. Oncol., 2018, 29(3): 632~639. 

    6. [6]

      Hua J T, Ahmed M, Guo H, et al. Cell, 2018, 174(3): 564~575. 

    7. [7]

      Jou Y S, Lo Y L, Hsiao C F, et al. Lung Cancer, 2009, 64(3): 251~256. 

    8. [8]

      Zhang W, Labonte M J, Lenz H J. Ann. Oncol., 2011, 22(2): 484~485. 

    9. [9]

      Eckel-Passow J E, Lachance D H, Molinaro A M, et al. New Engl. J. Med., 2015, 372(26): 2499~2508. 

    10. [10]

      Dougherty M J, Santi M, Brose M S, et al. Neuro-oncology, 2010, 12(7): 621~630. 

    11. [11]

      Nabors L B, Portnow J, Ammirati M, et al. J. Natl. Compr. Canc. Netw., 2017, 15(11): 1331~1345. 

    12. [12]

      Ettinger D S, Wood D E, Aisner D L, et al. J. Natl. Compr. Canc. Netw., 2017, 15(4): 504~535. 

    13. [13]

      Zhang D Y, Chen S X, Yin P. Nat. Chem., 2012, 4(3): 208~214. 

    14. [14]

      Barreiro L B, Henriques R, Mhlanga M M. High-throughput SNP genotyping: combining tag SNPs and molecular beacons//Single Nucleotide Polymorphisms. Humana Press, Totowa, NJ, 2009: 255~276.

    15. [15]

      Russom A, Haasl S, Brookes A J, et al. Anal. Chem., 2006, 78(7): 2220~2225. 

    16. [16]

      Dave N, Liu J. J. Phys. Chem. B, 2010, 114(47): 15694~15699. 

    17. [17]

      Lee J M, Jung Y. Angew. Chem. Int. Ed., 2011, 50(52): 12487~12490. 

    18. [18]

      Wang X, Zou M, Huang H, et al. Biosens. Bioelectron., 2013, 41: 569~575. 

    19. [19]

      Gao Z F, Ling Y, Lu L, et al. Anal. Chem., 2014, 86(5): 2543~2548. 

    20. [20]

      Dai Y, Furst A, Liu C C. Trends Biotechnol., 2019, 37(12): 1367~1382. 

    21. [21]

      Zhang X, Zhang J, Wu D, et al. Analyst, 2014, 139(23): 6109~6112. 

    22. [22]

      Knez K, Spasic D, Delport F, et al. Biosens. Bioelectron., 2015, 67: 394~399. 

    23. [23]

      Ito T, Hosokawa K, Maeda M. Biosens. Bioelectron., 2007, 22(8): 1816~1819. 

    24. [24]

      Shen W, Deng H, Teo A K, et al. Chem. Commun., 2012, 48(82): 10225~10227. 

    25. [25]

      Liu G, Lao R, Xu L, et al. Biosens. Bioelectron., 2013, 42: 516~521. 

    26. [26]

      Landegren U, Kaiser R, Sanders J, et al. Science, 1988, 241(4869): 1077~1080. 

    27. [27]

      Nilsson M, Malmgren H, Samiotaki M, et al. Science, 1994, 265(5181): 2085~2088. 

    28. [28]

      Lizardi P M, Huang X, Zhu Z, et al. Nat. Genet., 1998, 19(3): 225~232. 

    29. [29]

      Hardenbol P, Banér J, Jain M, et al. Nat. Biotechnol., 2003, 21(6): 673~678. 

    30. [30]

      Koh H R, Han K Y, Jung J, et al. Chem. Commun., 2011, 47(37): 10362~10364. 

    31. [31]

      Park J H, Jang H, Jung Y K, et al. Biosens. Bioelectron., 2017, 91: 122~127. 

    32. [32]

      Yu Y, Wu T, Johnson-Buck A, et al. Biosens. Bioelectron., 2016, 82: 248~254. 

    33. [33]

      Shi M, Zheng J, Tan Y, et al. Anal. Chem., 2015, 87(5): 2734~2740. 

    34. [34]

      Ngo H T, Gandra N, Fales A M, et al. Biosens. Bioelectron., 2016, 81: 8~14. 

    35. [35]

      Yin H, Huang X, Ma W, et al. Biosens. Bioelectron., 2014, 52: 8~12. 

    36. [36]

      Levesque M J, Ginart P, Wei Y, et al. Nat. Methods, 2013, 10(9): 865~867. 

    37. [37]

      Li Z, Zhou X, Li L, et al. Anal. Chem., 2018, 90(11): 6804~6810. 

    38. [38]

      Choi H M, Beck V A, Pierce N A. ACS Nano, 2014, 8(5): 4284~4294. 

    39. [39]

      Marras S A E, Bushkin Y, Tyagi S. PNAS, 2019, 116(28): 13921~13926. 

    40. [40]

      Krzywkowski T, Nilsson M. Methods Mol. Biol., 2018, 1649: 209~229. 

    41. [41]

      Deng R, Tang L, Tian Q, et al. Angew. Chem. Int. Ed., 2014, 53(9): 2389~2393. 

    42. [42]

      Yin F, Liu H, Li Q, et al. Anal. Chem., 2016, 88(9): 4600~4604. 

    43. [43]

      Wang D, Tang W, Wu X, et al. Anal. Chem., 2012, 84(16): 7008~7014. 

    44. [44]

      Zhou X, Yao D, He M, et al. Langmuir, 2018, 34(49): 14811~14816. 

    45. [45]

      Huang C, Wang J, Lv X, et al. Langmuir, 2018, 34(23): 6777~6783. 

    46. [46]

      Lin M, Song P, Zhou G, et al. Nat. Protoc., 2016, 11(7): 1244~1263. 

    47. [47]

      Abi A, Lin M, Pei H, et al. ACS Appl. Mater. Interf., 2014, 6(11): 8928~8931. 

    48. [48]

      Pei H, Lu N, Wen Y, et al. Adv. Mater., 2010, 22(42): 4754~4758. 

    49. [49]

      Pei H, Zuo X, Zhu D, et al. Acc. Chem. Res., 2014, 47(2): 550~559. 

    50. [50]

      Lin M, Wen Y, Li L, et al. Anal. Chem., 2014, 86(5): 2285~2288. 

    51. [51]

      Li Y, Wen Y, Wang L, et al. Biosens. Bioelectron., 2015, 67: 364~369. 

    52. [52]

      Xu L, Liang W, Wen Y, et al. Biosens. Bioelectron., 2018, 99: 424~430. 

    53. [53]

      Ge Z, Pei H, Wang L, et al. Sci. China Chem., 2011, 54(8): 1273~1276. 

    54. [54]

      Ge Z, Lin M, Wang P, et al. Anal. Chem., 2014, 86(4): 2124~2130. 

    55. [55]

      Wen Y, Pei H, Shen Y, et al. Sci. Rep., 2012, 2: 867. 

    56. [56]

      Wen Y, Liu G, Pei H, et al. Methods, 2013, 64(3): 276~282. 

  • 加载中
    1. [1]

      Hualei XuManman HanHaiqiang LiuLiang QinLulu ChenHao HuRan WuChenyu YangHua GuoJinrong LiJinxiang FuQichen HaoYijun ZhouJinchao FengXiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095

    2. [2]

      Ran WuDongxu JiangHao HuChenyu YangLiang QinLulu ChenZehui HuHualei XuJinrong LiHaiqiang LiuHua GuoJinxiang FuQichen HaoYijun ZhouJinchao FengQiang WangXiaodong Wang . 4-Aminoazobenzene: A novel negative ion matrix for enhanced MALDI tissue imaging of metabolites. Chinese Chemical Letters, 2024, 35(11): 109624-. doi: 10.1016/j.cclet.2024.109624

    3. [3]

      Weiwei LiuYu LiuZhaoyan TianZhaohan WangHui LiuSongqin LiuYafeng Wu . Online detecting living cells released TNF-α and studying intercellular communication using SuperDNA self-assembled conical nanochannel. Chinese Chemical Letters, 2025, 36(5): 110561-. doi: 10.1016/j.cclet.2024.110561

    4. [4]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    5. [5]

      Zihong LiJie ChengPing HuangGuoliang WuWeiying Lin . Activatable photoacoustic bioprobe for visual detection of aging in vivo. Chinese Chemical Letters, 2024, 35(4): 109153-. doi: 10.1016/j.cclet.2023.109153

    6. [6]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    7. [7]

      Yijian ZhaoJvzhe LiYunyi ShiJie HuMeiyi LiuYao ShenXinglin HouQiuyue WangQi WangZhiyi Yao . A label-free and ratiometric fluorescent sensor based on porphyrin-metal-organic frameworks for sensitive detection of ochratoxin A in cereal. Chinese Chemical Letters, 2025, 36(4): 110132-. doi: 10.1016/j.cclet.2024.110132

    8. [8]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    9. [9]

      Chunhui ZhangJie WangJieyang ZhanRunmin YangGuanggang GaoJiayuan ZhangLinlin FanMengqi WangHong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719

    10. [10]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    11. [11]

      Yuxin XiaoXiaowei WangYutong YinFangchao YinJinchao LiZhiyuan HouMashooq KhanRusong ZhaoWenli WuQiongzheng Hu . Distance-based lateral flow biosensor for the quantitative detection of bacterial endotoxin. Chinese Chemical Letters, 2024, 35(12): 109718-. doi: 10.1016/j.cclet.2024.109718

    12. [12]

      Haibo WanZhengzhong LvJicai JiangXuefeng ChengQingfeng XuHaibin ShiJianmei Lu . Multidimensional detection of roxarsone via AIE-based sulfates. Chinese Chemical Letters, 2025, 36(3): 110023-. doi: 10.1016/j.cclet.2024.110023

    13. [13]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    14. [14]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    15. [15]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    16. [16]

      Rui TIANDuo LIYuan RENJiamin CHAIXuehua SUNHaoyu LIYuecheng ZHANG . Dual-ligand-modified copper nanoclusters: Synthesis and application in ornidazole detection. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1245-1255. doi: 10.11862/CJIC.20240389

    17. [17]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    18. [18]

      Xinqiong LiGuocheng RaoXi PengChan YangYanjing ZhangYan TianXianghui FuJia Geng . Direct detection of C9orf72 hexanucleotide repeat expansions by nanopore biosensor. Chinese Chemical Letters, 2024, 35(5): 109419-. doi: 10.1016/j.cclet.2023.109419

    19. [19]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    20. [20]

      Jun XiongKe-Ke ChenNeng-Bin XieWei ChenWen-Xuan ShaoTong-Tong JiSi-Yu YuYu-Qi FengBi-Feng Yuan . Demethylase-assisted site-specific detection of N1-methyladenosine in RNA. Chinese Chemical Letters, 2024, 35(5): 108953-. doi: 10.1016/j.cclet.2023.108953

Metrics
  • PDF Downloads(4)
  • Abstract views(805)
  • HTML views(164)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return