Influence of Ho doping on the deNOx performance of Mn-Ce/TiO2 low temperature SCR catalyst
- Corresponding author: ZHANG Cheng, chengzhang@mail.hust.edu.cn
Citation:
LI Wei, ZHANG Cheng, LI Xin, TAN Peng, FANG Qing-yan, CHEN Gang. Influence of Ho doping on the deNOx performance of Mn-Ce/TiO2 low temperature SCR catalyst[J]. Journal of Fuel Chemistry and Technology,
;2017, 45(12): 1508-1513.
SHANG Xue-song, CHEN Jin-sheng, ZHAO Jin-ping, ZHANG Fu-wang, XU Ya, XU Qi. Discussion on the deactivation of SCR denitrification catalyst and its reasons[J]. J Fuel Chem Technol, 2011,39(6):465-470.
BUSCA G, LIETTI L, RAMIS G, RAMIS G, BERTI F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review[J]. Appl Catal B: Environ, 1998,18(1/2):1-36.
LIU G, GAO P X. A review of NOx storage/reduction catalysts: Mechanism, materials and degradation studies[J]. Catal Sci Technol, 2011,1(4):552-568. doi: 10.1039/c1cy00007a
ZHENG Zu-hong, TONG Hua, TONG Zhi-quan, HUANG Yan, LUO Jin. Catalytic reduction of NO over Mn-V-Ce/TiO2 catalysts at low reaction temperature[J]. J Fuel Chem Technol, 2010,38(3):343-351.
JIN R B, LIU Y, WANG Y, CEN W L, WU Z B, WANG H Q, WENG X L. The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature[J]. Appl Catal B: Environ, 2014,148-149(4):582-588.
YAN Dong-jie, YU Ya, XU Ying, HUANG Xue-min. Effect of loading sequence of Mn and Ce on the activity of Mn-Ce/TiO2 catalysts at low-temperature[J]. Chem Ind Eng Prog, 2015,34(6):1652-1655.
ZHENG Yu-ying, WANG Xie. Research progress on Mn-based catalysts for low-temperature selective catalytic reduction of NOx[J]. J Funct Mater, 2014,45(11):11008-11012. doi: 10.3969/j.issn.1001-9731.2014.11.002
REDDY B M, KHAN A. Structural characterization of CeO2-TiO2 and V2O5/CeO2-TiO2 catalysts by Raman And XPS techniques[J]. J Phys Chem B, 2003,107(22):5162-5167. doi: 10.1021/jp0344601
XU G Y, WANG Y T, YANG Y, FU Y, GOU X, WU J X. Experimental research on NH3-SCR performance of Mn-Ce/TiO2 Catalyst[C]//International Conference on Machinery, Materials Engineering, Chemical Engineering and Biotechnology. 2016, 418-421.
SHENG Z Y, HU Y F, XUE J M, WANG X M, LIAO W P. A novel co-precipitation method for preparation of Mn-Ce/TiO2 composites for NOx reduction with NH3 at low temperature[J]. Environ Technol, 2012,33(21)2421. doi: 10.1080/09593330.2012.671370
SHEN B X, LIU T, ZHAO N, YING X Y, DENG L D. Iron doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. J Environ Sci (China), 2010,22(9):1447-1454. doi: 10.1016/S1001-0742(09)60274-6
SIMAS A M, FREIRE R O, ROCHA G B. Lanthanide coordination compounds modeling: Sparkle/PM3 parameters for dysprosium (Ⅲ), holmium (Ⅲ) and erbium (Ⅲ)[J]. J Organomet Chem, 2008,693(10):1952-1956. doi: 10.1016/j.jorganchem.2008.01.029
CAI H S, LIU G G, LU W Y, LI X X, YU L, LI D G. Effect of Ho-doping on photocatalytic activity of nanosized TiO2[J]. Catalyst, 2008,26(1):71-75.
SHI J W, ZHENG J T, HU Y, ZHAO Y C. Influence of Fe3+ and Ho3+ co-doping on the photocatalytic activity of TiO2[J]. Mater Chem Phys, 2007,106(2/3):247-249.
SHI J W, ZHENG J T, WU P. Preparation, characterization and photocatalytic activities of holmium-doped titanium dioxide nanoparticles[J]. J Hazard Mater, 2009,161(1):416-422. doi: 10.1016/j.jhazmat.2008.03.114
ZHU Y W, ZHANG Y P, XIAO R, HUANG T J, SHEN K. Novel holmium-modified Fe-Mn/TiO2 catalysts with a broad temperature window and high sulfur dioxide tolerance for low-temperature SCR[J]. Catal Commun, 2017,88:64-67. doi: 10.1016/j.catcom.2016.09.031
SAQER S M, KONDARIDES D I, VERYKIOS X E. Catalytic oxidation of toluene over binary mixtures of copper, manganese and cerium oxides supported on γ-Al2O3[J]. Appl Catal B: Environ, 2011,103(3/4):275-286.
ZHANG Xiao-peng, SHEN Bo-xiong. Selective catalytic reduction of NO with NH3 over Mn-based catalysts at low temperature[J]. J Fuel Chem Technol, 2013,41(1):123-128.
WU Z B, JIN R B, LIU Y, WANG H Q. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature[J]. Catal Commun, 2008,9(13):2217-2220. doi: 10.1016/j.catcom.2008.05.001
LIU F D, HE H, DING Y, ZHANG C B. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3[J]. Appl Catal B: Environ, 2009,93(1/2):194-204.
JIN Rui-beng. Low temperature SCR study on preparation, reaction mechanism and anti-sulfur performance of supported Mn-Ce series catalyst[D]. Zhejiang: Zhejiang University, 2010.
BONINGARI T, ETTIREDDY P R, SOMOGYVARI A, LIU Y, VORONTSOV A, MCDONALD C A, SMIRNIOTIS P G. Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NOx under oxygen-rich conditions[J]. J Catal, 2015,325:145-155. doi: 10.1016/j.jcat.2015.03.002
LIAO Yong-jin, ZHANG Ya-ping, YU Yue-xi, LI Juan, GUO Wang-qiu, WANG Xiao-lei. In situ FT-IR studies on low temperature NH3-SCR mechanism of NOx over MnOx/WO3/TiO2 catalyst[J]. CIESC J, 2016,67(12):5031-5039.
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Xiaofang Li , Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
1: N2; 2: NH3; 3: NO; 4: O2; 5: pressure reducing valve; 6: mass flow meter; 7: gas preheat mixer; 8: temperature controller; 9: tube furnace; 10: catalytic reactor
a: Mn0.4Ce0.07Ho0.15/TiO2; b: Mn0.4Ce0.07Ho0.1/TiO2; c: Mn0.4Ce0.07Ho0.05/TiO2; d: Mn0.4Ce0.07Ho0.01/TiO2; e: Mn0.4Ce0.07/TiO2
a: Mn0.4Ce0.07Ho0.1/TiO2; b: Mn0.4Ce0.07/TiO2
a: Mn0.4Ce0.07/TiO2; b: Mn0.4Ce0.07Ho0.05/TiO2; c: Mn0.4Ce0.07Ho0.1/TiO2; d: Mn0.4Ce0.07Ho0.15/TiO2