Citation: LI Wei, ZHANG Cheng, LI Xin, TAN Peng, FANG Qing-yan, CHEN Gang. Influence of Ho doping on the deNOx performance of Mn-Ce/TiO2 low temperature SCR catalyst[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(12): 1508-1513. shu

Influence of Ho doping on the deNOx performance of Mn-Ce/TiO2 low temperature SCR catalyst

  • Corresponding author: ZHANG Cheng, chengzhang@mail.hust.edu.cn
  • Received Date: 11 July 2017
    Revised Date: 25 September 2017

    Fund Project: The project was supported by the National Natural Science Foundation of China (51676076) and National International Science and Technology Cooperation Project (2015DFA60410)National International Science and Technology Cooperation Project 2015DFA60410the National Natural Science Foundation of China 51676076

Figures(5)

  • A series low temperature SCR catalysts Mn0.4Ce0.07Hox/TiO2 catalysts with different Ho doping ratios were prepared by impregnation method. The effects of Ho doping on the denitrification of Mn-Ce/TiO2 low temperature SCR catalyst were studied. The catalysts were characterized by using X-ray photoelectron spectroscopy (XPS), X-ray fluorescence probe (XRF), Brunauer-Emmett-Teller (BET) surface measurement, X-ray diffraction (XRD) and NH3-temperature programmed desorption (NH3-TPD). The results showed that the doping of Ho can improve the low temperature denitrification performance of Mn-Ce/TiO2 catalyst. The catalytic efficiency of Mn0.4Ce0.07Ho0.1/TiO2 with the ratio of Ho:Ti=0.1 reached 91.17% at 200℃, which is the highest during the process. The catalytic efficiency could reach more than 80% at 140-240℃. The characterization results showed that Ho doping can increase the surface area of the catalyst, increase the concentration of chemisorbed oxygen in the catalyst and increase the deposition amount of Ce on the catalyst surface.
  • 加载中
    1. [1]

      SHANG Xue-song, CHEN Jin-sheng, ZHAO Jin-ping, ZHANG Fu-wang, XU Ya, XU Qi. Discussion on the deactivation of SCR denitrification catalyst and its reasons[J]. J Fuel Chem Technol, 2011,39(6):465-470.  

    2. [2]

      BUSCA G, LIETTI L, RAMIS G, RAMIS G, BERTI F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review[J]. Appl Catal B: Environ, 1998,18(1/2):1-36.  

    3. [3]

      LIU G, GAO P X. A review of NOx storage/reduction catalysts: Mechanism, materials and degradation studies[J]. Catal Sci Technol, 2011,1(4):552-568. doi: 10.1039/c1cy00007a

    4. [4]

      ZHENG Zu-hong, TONG Hua, TONG Zhi-quan, HUANG Yan, LUO Jin. Catalytic reduction of NO over Mn-V-Ce/TiO2 catalysts at low reaction temperature[J]. J Fuel Chem Technol, 2010,38(3):343-351.  

    5. [5]

      JIN R B, LIU Y, WANG Y, CEN W L, WU Z B, WANG H Q, WENG X L. The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature[J]. Appl Catal B: Environ, 2014,148-149(4):582-588.

    6. [6]

      YAN Dong-jie, YU Ya, XU Ying, HUANG Xue-min. Effect of loading sequence of Mn and Ce on the activity of Mn-Ce/TiO2 catalysts at low-temperature[J]. Chem Ind Eng Prog, 2015,34(6):1652-1655.  

    7. [7]

      ZHENG Yu-ying, WANG Xie. Research progress on Mn-based catalysts for low-temperature selective catalytic reduction of NOx[J]. J Funct Mater, 2014,45(11):11008-11012. doi: 10.3969/j.issn.1001-9731.2014.11.002

    8. [8]

      REDDY B M, KHAN A. Structural characterization of CeO2-TiO2 and V2O5/CeO2-TiO2 catalysts by Raman And XPS techniques[J]. J Phys Chem B, 2003,107(22):5162-5167. doi: 10.1021/jp0344601

    9. [9]

      XU G Y, WANG Y T, YANG Y, FU Y, GOU X, WU J X. Experimental research on NH3-SCR performance of Mn-Ce/TiO2 Catalyst[C]//International Conference on Machinery, Materials Engineering, Chemical Engineering and Biotechnology. 2016, 418-421. 

    10. [10]

      SHENG Z Y, HU Y F, XUE J M, WANG X M, LIAO W P. A novel co-precipitation method for preparation of Mn-Ce/TiO2 composites for NOx reduction with NH3 at low temperature[J]. Environ Technol, 2012,33(21)2421. doi: 10.1080/09593330.2012.671370

    11. [11]

      SHEN B X, LIU T, ZHAO N, YING X Y, DENG L D. Iron doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. J Environ Sci (China), 2010,22(9):1447-1454. doi: 10.1016/S1001-0742(09)60274-6

    12. [12]

      SIMAS A M, FREIRE R O, ROCHA G B. Lanthanide coordination compounds modeling: Sparkle/PM3 parameters for dysprosium (Ⅲ), holmium (Ⅲ) and erbium (Ⅲ)[J]. J Organomet Chem, 2008,693(10):1952-1956. doi: 10.1016/j.jorganchem.2008.01.029

    13. [13]

      CAI H S, LIU G G, LU W Y, LI X X, YU L, LI D G. Effect of Ho-doping on photocatalytic activity of nanosized TiO2[J]. Catalyst, 2008,26(1):71-75.  

    14. [14]

      SHI J W, ZHENG J T, HU Y, ZHAO Y C. Influence of Fe3+ and Ho3+ co-doping on the photocatalytic activity of TiO2[J]. Mater Chem Phys, 2007,106(2/3):247-249.  

    15. [15]

      SHI J W, ZHENG J T, WU P. Preparation, characterization and photocatalytic activities of holmium-doped titanium dioxide nanoparticles[J]. J Hazard Mater, 2009,161(1):416-422. doi: 10.1016/j.jhazmat.2008.03.114

    16. [16]

      ZHU Y W, ZHANG Y P, XIAO R, HUANG T J, SHEN K. Novel holmium-modified Fe-Mn/TiO2 catalysts with a broad temperature window and high sulfur dioxide tolerance for low-temperature SCR[J]. Catal Commun, 2017,88:64-67. doi: 10.1016/j.catcom.2016.09.031

    17. [17]

      SAQER S M, KONDARIDES D I, VERYKIOS X E. Catalytic oxidation of toluene over binary mixtures of copper, manganese and cerium oxides supported on γ-Al2O3[J]. Appl Catal B: Environ, 2011,103(3/4):275-286.  

    18. [18]

      ZHANG Xiao-peng, SHEN Bo-xiong. Selective catalytic reduction of NO with NH3 over Mn-based catalysts at low temperature[J]. J Fuel Chem Technol, 2013,41(1):123-128.  

    19. [19]

      WU Z B, JIN R B, LIU Y, WANG H Q. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature[J]. Catal Commun, 2008,9(13):2217-2220. doi: 10.1016/j.catcom.2008.05.001

    20. [20]

      LIU F D, HE H, DING Y, ZHANG C B. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3[J]. Appl Catal B: Environ, 2009,93(1/2):194-204.  

    21. [21]

      JIN Rui-beng. Low temperature SCR study on preparation, reaction mechanism and anti-sulfur performance of supported Mn-Ce series catalyst[D]. Zhejiang: Zhejiang University, 2010. 

    22. [22]

      BONINGARI T, ETTIREDDY P R, SOMOGYVARI A, LIU Y, VORONTSOV A, MCDONALD C A, SMIRNIOTIS P G. Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NOx under oxygen-rich conditions[J]. J Catal, 2015,325:145-155. doi: 10.1016/j.jcat.2015.03.002

    23. [23]

      LIAO Yong-jin, ZHANG Ya-ping, YU Yue-xi, LI Juan, GUO Wang-qiu, WANG Xiao-lei. In situ FT-IR studies on low temperature NH3-SCR mechanism of NOx over MnOx/WO3/TiO2 catalyst[J]. CIESC J, 2016,67(12):5031-5039.  

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    4. [4]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    5. [5]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    6. [6]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    7. [7]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    8. [8]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    13. [13]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    16. [16]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    17. [17]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    20. [20]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

Metrics
  • PDF Downloads(4)
  • Abstract views(1872)
  • HTML views(852)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return