Citation: ZHAO Si-meng, LIN Ming-gui, XI Hong-juan, CHEN Xiao-yan, WANG Jun-gang, JIA Li-tao, LI De-bao, HOU Bo. Hierarchical SAPO-11 prepared using SBA-15 as the silicon source and its application in n-dodecane hydroisomerization[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(6): 700-709. shu

Hierarchical SAPO-11 prepared using SBA-15 as the silicon source and its application in n-dodecane hydroisomerization

  • Corresponding author: LIN Ming-gui, linmg@sxicc.ac.cn LI De-bao, dbli@sxicc.ac.cn
  • Received Date: 6 February 2018
    Revised Date: 2 April 2018

    Fund Project: the Strategic Priority Research Program of the Chinese Academy of Sciences XDA07070700The project was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA07070700)

Figures(7)

  • SBA-15 with the removal of template agent, which served as both the silicon source and indirect template agent, was used to hydrothermally synthesize hierarchical SAPO-11 molecular sieve. The crystal structure, morphology, acidity and texture of the samples were characterized by XRD, SEM, FT-IR and N2 physical adsorption. The results showed that the pure SAPO-11 can be obtained by using calcined SBA-15 as the silicon source. At the same time, SBA-15 was completely transformed in the synthesis system. The obtained SAPO-11 sample showed a hollow near-column shape with particle size of about 1-3 μm, which was composed of bar-shape structure with a width of about 100 nm. Compared with conventional SAPO-11 synthesized by adopting white carbon black or colloidal silica as the silicon source, the addition of SBA-15 successfully introduced mesoporous channels with pore size of 5-10 nm into SAPO-11 molecular sieve. Moreover, the proportion of moderate and strong Brønsted acid was larger than that of weak Brønsted acid. Finally, the catalytic behaviors of Pt/SAPO-11 bifunctional catalysts were investigated in the hydroisomerization of n-dodecane. The results indicated that the hierarchical catalyst synthesized with SBA-15 was much more active and selective. The excellent isomerization performance was closely related to the acidity and pore structure of the hierarchical SAPO-11 molecular sieve. The increase of moderate and strong Brønsted acidity contributed to the improvement of activity. Meanwhile, the mesopores were conducive to the significant increase of selectivity via accelerating diffusion of the isomerization products.
  • 加载中
    1. [1]

      WANG Z, TIAN Z, TENG F, WEN G, XU Y, XU Z, LIN L. Hydroisomerization of long-chain alkane over Pt/SAPO-11 catalysts synthesized from nonaqueous media[J]. Catal Lett, 2005,103(1):109-116.

    2. [2]

      AKHMEDOV V, AL-KHOWAITER S. Recent advances and future aspects in the selective isomerization of high n-alkanes[J]. Cat Rev-Sci Eng, 2007,49(1):33-149. doi: 10.1080/01614940601128427

    3. [3]

      MILLER S. Studies on wax isomerization for lubes and fuels[J]. Stud Surf Sci Catal, 1994,84:2319-2326. doi: 10.1016/S0167-2991(08)63796-9

    4. [4]

      TAYLOR R, PETTY R. Selective hydroisomerization of long chain normal paraffins[J]. Appl Catal A:Gen, 1994,119(1):121-138. doi: 10.1016/0926-860X(94)85029-1

    5. [5]

      DELDARI H. Suitable catalysts for hydroisomerization of long-chain normal paraffins[J]. Appl Catal A:Gen, 2005,293:1-10. doi: 10.1016/j.apcata.2005.07.008

    6. [6]

      GENG C, ZHANG F, GAO Z, ZHAO L, ZHOU J. Hydroisomerization of n-tetradecane over Pt/SAPO-11 catalyst[J]. Catal Today, 2004,93(1):485-491.  

    7. [7]

      HARTMANN M. Hierarchical zeolites:A proven strategy to combine shape selectivity with efficient mass transport[J]. Angew Chem Int Ed, 2004,43(44):5880-5882. doi: 10.1002/(ISSN)1521-3773

    8. [8]

      FANG Y, HU H, CHEN G. In situ assembly of zeolite nanocrystals into mesoporous aggregate with single-crystal-like morphology without secondary template[J]. Chem Mater, 2008,20(5):1670-1672. doi: 10.1021/cm703265q

    9. [9]

      PARK D H, KIM S S, WANG H, PINNAVAIA T J, PAPAPETROU M C, LAPPAS A A, TRIANTAFYLLIDIS K S. Selective petroleum refining over a zeolite catalyst with small intracrystal mesopores[J]. Angew Chem Int Ed, 2009,121(41):7781-7784. doi: 10.1002/ange.v121:41

    10. [10]

      VERBOEKEND D, MILINA M, PEÉREZ-RAMÍREZ J. Hierarchical silicoaluminophosphates by postsynthetic modification:Influence of topology, composition, and silicon distribution[J]. Chem Mater, 2014,26(15):4552-4562.

    11. [11]

      GROEN J C, ZHU W, BROUWER S, HUYNINK S J, KAPTEIJN F, MOULIJN J A, PÉREZ-RAMÍREZ J. Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication[J]. J Am Chem Soc, 2007,129(2):355-360. doi: 10.1021/ja065737o

    12. [12]

      FAN Y, XIAO H, SHI G, LIU H, BAO X. Alkylphosphonic acid-and small amine-templated synthesis of hierarchical silicoaluminophosphate molecular sieves with high isomerization selectivity to di-branched paraffins[J]. J Catal, 2012,285(1):251-259. doi: 10.1016/j.jcat.2011.09.037

    13. [13]

      EGEBLAD K, KUSTOVA M, KLITGAARD S K, ZHU K, CHRISTENSEN C H. Mesoporous zeolite and zeotype single crystals synthesized in fluoride media[J]. Microporous Mesoporous Mater, 2007,101(1):214-223.

    14. [14]

      SCHMIDT F, PAASCH S, BRUNNER E, KASKEL S. Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction[J]. Microporous Mesoporous Mater, 2012,164:214-221. doi: 10.1016/j.micromeso.2012.04.045

    15. [15]

      SAÁNCHEZ-SAÁNCHEZ M, MANJOÓN-SANZ ADÍAZ I, MAYORAL ASASTRE E. Micron-sized single-crystal-like CoAPO-5/carbon composites leading to hierarchical CoAPO-5 with both inter- and intracrystalline mesoporosity[J]. Cryst Growth Des, 2013,13(6):2476-2485. doi: 10.1021/cg4001768

    16. [16]

      NAYDENOV V, TOSHEVA L, STERTE J. Spherical silica macrostructures containing vanadium and tungsten oxides assembled by the resin templating method[J]. Microporous Mesoporous Mater, 2002,55(3):253-263.

    17. [17]

      LIU Y, WANG L, ZHANG J, CHEN F, ANPO M. Preparation of macroporous SAPO-34 microspheres by a spray drying method using polystyrene spheres as hard template[J]. Res Chem Intermed, 2011,37(8):949-959. doi: 10.1007/s11164-011-0302-2

    18. [18]

      CHU N, YANG J, LI C, CUI J, ZHAO Q, YIN X, WANG J. An unusual hierarchical ZSM-5 microsphere with good catalytic performance in methane dehydroaromatization[J]. Microporous Mesoporous Mater, 2009,118(1):169-175.

    19. [19]

      MILETTO I, PAUL G, CHAPMAN S, GATTI G, MARCHESE L, RAJA R, GIANOTTI E. Mesoporous silica scaffolds as precursors to drive the formation of hierarchical SAPO-34 with tunable acid properties[J]. Chem Eur J, 2017,23(41):9952-9961. doi: 10.1002/chem.v23.41

    20. [20]

      LIU Y, WANG L, ZHANG J, CHEN L, XU H. A layered mesoporous SAPO-34 prepared by using as-synthesized SBA-15 as silica source[J]. Microporous Mesoporous Mater, 2011,145(1):150-156.

    21. [21]

      LOK B M, MESSINA C A, PATTON R L, GAJEK R T, CANNAN T R, FLANIGEN E M. Silicoaluminophosphate molecular sieves:another new class of microporous crystalline inorganic solids[J]. J Am Chem Soc, 1984,106(20):6092-6093. doi: 10.1021/ja00332a063

    22. [22]

      WANG Zhe-ming, YAN Zi-feng. Synthesis of SAPO-11 molecular sieves[J]. J Fuel Chem Technol, 2003,31(4):360-366.  

    23. [23]

      LIU Qiang, DU Jun-chen, ZHANG Ai-min. Effects of acid and salt treatment on physical and catalytic performance of Pt/SAPO-11[J]. J Fuel Chem Technol, 2017,45(3):337-344.  

    24. [24]

      LIU Yue-ming, ZHAN Feng-mei, SHU Xing-tian, HE Ming-yuan. Factors affecting the spacer changes of SAPO-11 zeolite[J]. Chin J Catal, 2003,24(10):783-787. doi: 10.3321/j.issn:0253-9837.2003.10.015

    25. [25]

      TAPP N J, MILESTONE N B, BOWDEN M E, MEINHOLD R H. Water adsorption on AlPO4-11:Structural changes[J]. Zeolites, 1990,10(2):105-110.

    26. [26]

      ZHAO D, HUO Q, FENG J, CHMELKA B F, STUCKY G D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures[J]. J Am Chem Soc, 1998,120(24):6024-6036.

    27. [27]

      TATSUMI T, KOYANO K A, TANAKA Y, NAKATA S. Mechanochemical collapse of M41S mesoporous molecular sieves through hydrolysis of siloxane bonds[J]. Chem Lett, 1997,26(5):469-470. doi: 10.1246/cl.1997.469

    28. [28]

      KIM J M, RYOO R. Disintegration of mesoporous structures of MCM-41 and MCM-48 in water[J]. Bull Korean Chem Soc, 1996,17(1):66-68.

    29. [29]

      MERIAUDEAU P, TUAN V A, LEFEBVRE F, NGHIEM V T, NACCACHE C. Isomorphous substitution of silicon in the AlPO4 framework with AEL structure:n-octane hydroconversion[J]. Microporous Mesoporous Mater, 1998,22(1):435-449.

    30. [30]

      NIEMINEN V, KUMAR N, HEIKKILÄ T, LAINE E, VILLEGAS J, SALMI T, MURZIN D Y. Isomerization of 1-butene over SAPO-11 catalysts synthesized by varying synthesis time and silica sources[J]. Appl Catal A:Gen, 2004,259(2):227-234. doi: 10.1016/j.apcata.2003.09.038

    31. [31]

      YANG Z, LI J, LIU Y, LIU C. Effect of silicon precursor on silicon incorporation in SAPO-11 and their catalytic performance for hydroisomerization of n-octane on Pt-based catalysts[J]. J Energ Chem, 2017,26(4):688-694.  

    32. [32]

      YANG Na, WANG Hong-ying, LIU Yun-qi, LIU Chen-guang. Study on the transformation rule of different long chain alkane hydroisomerization over Pt/SAPO-11 catalyst[J]. J Fuel Chem Technol, 2016,44(1):91-98.  

    33. [33]

      CAMPELO J M, LAFONT F, MARINAS J M. Hydroconversion of n-dodecane over Pt/SAPO-11 catalyst[J]. Appl Catal A:Gen, 1998,170(1):139-144. doi: 10.1016/S0926-860X(98)00036-2

    34. [34]

      MARTENS J A, VANBUTSELE G, JACOBS P A, DENAYER J, OCAKOGLU R, BARON G, MUÑOZ ARROYO J A, THYBAUT J, MARIN G B. Evidences for pore mouth and key-lock catalysis in hydroisomerization of long n-alkanes over 10-ring tubular pore bifunctional zeolites[J]. Catal Today, 2001,65(2):111-116.

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    3. [3]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    4. [4]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    5. [5]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    6. [6]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    7. [7]

      . . University Chemistry, 2024, 39(11): 0-0.

    8. [8]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    9. [9]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    10. [10]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    13. [13]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    14. [14]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    15. [15]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    17. [17]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    18. [18]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    19. [19]

      Jianquan Liu Xiangshan Wang . Teaching Design and Practice of Naming Rules for Circular Isomer Configuration under the Guidance of Information Literacy. University Chemistry, 2025, 40(7): 352-358. doi: 10.12461/PKU.DXHX202409082

    20. [20]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

Metrics
  • PDF Downloads(19)
  • Abstract views(2578)
  • HTML views(893)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return