Citation: JING Jie-ying, ZHANG Zi-yi, WANG Shi-dong, LI Wen-ying. Influence of calcination temperature on the structure and catalytic reforming performance of Ni/CaO-Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(6): 673-679. shu

Influence of calcination temperature on the structure and catalytic reforming performance of Ni/CaO-Al2O3 catalyst

  • Corresponding author: JING Jie-ying, jingjieying@tyut.edu.cn LI Wen-ying, ying@tyut.edu.cn
  • Received Date: 30 March 2018
    Revised Date: 3 May 2018

    Fund Project: The project was supported by National Natural Science Foundation of China (21406155), Natural Science Foundation of Shanxi Province (201701D221237) and Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi (164010121-S)Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi 164010121-SNatural Science Foundation of Shanxi Province 201701D221237National Natural Science Foundation of China 21406155

Figures(7)

  • Considering the tunable structure of hydrotalcite-like compounds, co-precipitation method was employed to synthesize Ni/CaO-Al2O3 composite catalysts. The influence of calcination temperature on the structure and catalytic reforming performance of Ni/CaO-Al2O3 catalyst investigated. The results showed that the specific surface area and Ni particle size of the as-synthesized composite catalysts were greatly affected by calcination temperature of the precursor derived from the variable interaction between the Ni and the support. When the calcination temperature was 700 ℃, the composite catalyst obtained a specific surface area of 21.42 m2/g and Ni particle size of 19.51 nm. The catalytic evaluation showed that the composite catalyst possessed a H2 concentration of 98.31% and a CH4 conversion of 94.87%, and H2 concentration exceeded 97.35% even after 10 cyclic runs. The high catalytic activity was ascribed to the higher specific surface area, which provided more active sites and enhanced CO2 sorption. The smaller Ni particle size improved the anti-sintering capacity of the composite catalyst, endowing the composite catalyst superior stability.
  • 加载中
    1. [1]

      BALASUBRAMANIAN B, ORTIZ A L, KAYTAKOGLU S, HARRISON D P. Hydrogen from methane in a single-step process[J]. Chem Eng Sci, 1999,54(15):3543-3552.

    2. [2]

      SILVA J M, SORIA M A, MADEIRA L M. Thermodynamic analysis of glycerol steam reforming for hydrogen production with in situ hydrogen and carbon dioxide separation[J]. J Power Sources, 2015,273:423-430. doi: 10.1016/j.jpowsour.2014.09.093

    3. [3]

      ROMANO M C, CASSOTTI E N, CHIESA P, MEYER J, MASTIN J. Application of the sorption enhanced-steam reforming process in combined cycle-based power plants[J]. Energy Procedia, 2011,4(4):1125-1132.  

    4. [4]

      LYSIKOV A, DEREVSCHIKOV V, OKUNEV A. Sorption-enhanced reforming of bioethanol in dual fixed bed reactor for continuous hydrogen production[J]. Int J Hydrogen Energy, 2015,40(42):14436-14444. doi: 10.1016/j.ijhydene.2015.06.029

    5. [5]

      XUE X, WU S. The microstructure and stability of a Ni-nano-CaO/Al2O3 reforming catalyst under carbonation-calcination cycling conditions[J]. Int J Hydrogen Energy, 2015,40(16):5617-5623. doi: 10.1016/j.ijhydene.2015.02.032

    6. [6]

      LI M. Thermodynamic analysis of adsorption enhanced reforming of ethanol[J]. Int J Hydrogen Energy, 2009,34(23):9362-9372. doi: 10.1016/j.ijhydene.2009.09.054

    7. [7]

      JING J Y, LI T Y, ZHANG X W, WANG S D, FENG J, TURMEL W A, LI W Y. Enhanced CO2 sorption performance of CaO/Ca3Al2O6 sorbents and its sintering-resistance mechanism[J]. Appl Energy, 2017,199:225-233. doi: 10.1016/j.apenergy.2017.03.131

    8. [8]

      JING J Y, ZHANG X W, WANG S D, LI T Y, LI W Y. Improving CO2 sorption performance of CaO/Ca3Al2O6 sorbents by thermally pretreated in CO2 atmosphere[J]. Energy Procedia, 2017,142:3258-3263. doi: 10.1016/j.egypro.2017.12.500

    9. [9]

      GARCIA-LARIO A L, AZNAR M, GRASA G S, MURILLO R. Evaluation of process variables on the performance of sorption enhanced methane reforming[J]. J Power Sources, 2015,285:90-99. doi: 10.1016/j.jpowsour.2015.03.075

    10. [10]

      CHEN Y, MAHECHABOTERO A, LIM C J, GRACE J R, ZHANG J, ZHAO Y, ZHENG C. Hydrogen production in a sorption-enhanced fluidized-bed membrane reactor:Operating parameter investigation[J]. Ind Eng Chem Res, 2014,53(14):6230-6242. doi: 10.1021/ie500294k

    11. [11]

      RADFARNIA H R, ILIUTA M C. Hydrogen production by sorption-enhanced steam methane reforming process using CaO-Zr/Ni bifunctional sorbent-catalyst[J]. Chem Eng Process, 2014,86:96-103. doi: 10.1016/j.cep.2014.10.014

    12. [12]

      CHANBURANASIRI N, RIBEIRO A M, RODRIGUES A E, ARPORNWICHANOP A, LAOSIRIPOJANA N, PRASERTHDAM P, ASSABUMRUNGRAT S. Hydrogen production via sorption enhanced steam methane reforming process using Ni/CaO multifunctional catalyst[J]. Ind Eng Chem Res, 2011,50(24):69-86.

    13. [13]

      RADFRNIA H R, ILIUTA M C. Development of Al-stabilized CaO-nickel hybrid sorbent-catalyst for sorption-enhanced steam methane reforming[J]. Chem Eng Sci, 2014,109(16):212-219.

    14. [14]

      CESARIO M R, BARROS B S, COURSON C, MELO D M A, KIENNEMANN A. Catalytic performances of Ni-CaO-mayenite in CO2 sorption enhanced steam methane reforming[J]. Fuel Process Technol, 2015,131:247-253. doi: 10.1016/j.fuproc.2014.11.028

    15. [15]

      XU P, ZHOU Z, ZHAO C, CHENG Z. Ni/CaO-Al2O3 bifunctional catalysts for sorption-enhanced steam methane reforming[J]. AIChE J, 2015,60(10):3547-3556.

    16. [16]

      PHROMPRASIT J, POWELL J, WONGSAKULPHASATCH S, KIATKITTIPONG W, BUMROONGSAKULSAWAT P, ASSABUMRUNGRAT S. Activity and stability performance of multifunctional catalyst (Ni/CaO and Ni/Ca12Al14O33-CaO) for bio-hydrogen production from sorption enhanced biogas steam reforming[J]. Int J Hydrogen Energy, 2016,41(18):7318-7331. doi: 10.1016/j.ijhydene.2016.03.125

    17. [17]

      WU K, JING J Y, LI W Y. Calcination temperature influence on the catalytic performance of Ni/CeO2-ZrO2 for low temperature steam reforming of methane[C]//31st Annual International Pittsburgh Coal Conference, 2014. Pittsburgh, PA, USA.

    18. [18]

      LI T Y, JING J Y, FENG J, LI W Y. Carbon dioxide capture over Al-doped CaO-based sorbents with enhanced reactive stability in cyclic operations[C]//2015 Internation Conference on Coal Science and Technology, 2015. Australia.

    19. [19]

      JING Jie-ying, WANG Shi-dong, ZHANG Xue-wei, LI Qing, LI Wen-ying. Influence of Ca/Al molar ratio on the structure and catalytic reforming performance of Ni/CaO-Al2O3 catalyst[J]. J Fuel Chem Technol, 2017,45(8):956-962.  

    20. [20]

      WU C H, CHANG Y P, CHEN S Y, LIU D M, YU C T, PEN B L. Characterization and structure evolution of Ca-Al-CO3 hydrotalcite film for high temperature CO2 adsorption[J]. J Nanosci Nanotechnol, 2010,10(7):4716-4720. doi: 10.1166/jnn.2010.1708

    21. [21]

      CHANG P H, CHANG Y P, CHEN S Y, YY C T, CHYOU Y P. Ca-rich Ca-Al-oxide, high-temperature-stable sorbents prepared from hydrotalcite precursors:Synthesis, characterization, and CO2 capture capacity[J]. ChemSusChem, 2011,4(12):1844-1851. doi: 10.1002/cssc.v4.12

    22. [22]

      ZHANG Fan, WU Rong, WU Su-fang. The preparation of a type of NiO-CaO sorption complex catalyst by hydrothermal precipitation method and its application in ReSER process[J]. J Chem Eng Chin Univ, 2014,28(5):985-991.  

  • 加载中
    1. [1]

      Mingjie Lei Wenting Hu Kexin Lin Xiujuan Sun Haoshen Zhang Ye Qian Tongyue Kang Xiulin Wu Hailong Liao Yuan Pan Yuwei Zhang Diye Wei Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083

    2. [2]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    3. [3]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    4. [4]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    7. [7]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    8. [8]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    9. [9]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    10. [10]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    11. [11]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    12. [12]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    13. [13]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    14. [14]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    15. [15]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    16. [16]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    17. [17]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    18. [18]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    19. [19]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    20. [20]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

Metrics
  • PDF Downloads(7)
  • Abstract views(1446)
  • HTML views(485)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return