Citation: JING Jie-ying, ZHANG Zi-yi, WANG Shi-dong, LI Wen-ying. Influence of calcination temperature on the structure and catalytic reforming performance of Ni/CaO-Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(6): 673-679. shu

Influence of calcination temperature on the structure and catalytic reforming performance of Ni/CaO-Al2O3 catalyst

  • Corresponding author: JING Jie-ying, jingjieying@tyut.edu.cn LI Wen-ying, ying@tyut.edu.cn
  • Received Date: 30 March 2018
    Revised Date: 3 May 2018

    Fund Project: The project was supported by National Natural Science Foundation of China (21406155), Natural Science Foundation of Shanxi Province (201701D221237) and Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi (164010121-S)Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi 164010121-SNatural Science Foundation of Shanxi Province 201701D221237National Natural Science Foundation of China 21406155

Figures(7)

  • Considering the tunable structure of hydrotalcite-like compounds, co-precipitation method was employed to synthesize Ni/CaO-Al2O3 composite catalysts. The influence of calcination temperature on the structure and catalytic reforming performance of Ni/CaO-Al2O3 catalyst investigated. The results showed that the specific surface area and Ni particle size of the as-synthesized composite catalysts were greatly affected by calcination temperature of the precursor derived from the variable interaction between the Ni and the support. When the calcination temperature was 700 ℃, the composite catalyst obtained a specific surface area of 21.42 m2/g and Ni particle size of 19.51 nm. The catalytic evaluation showed that the composite catalyst possessed a H2 concentration of 98.31% and a CH4 conversion of 94.87%, and H2 concentration exceeded 97.35% even after 10 cyclic runs. The high catalytic activity was ascribed to the higher specific surface area, which provided more active sites and enhanced CO2 sorption. The smaller Ni particle size improved the anti-sintering capacity of the composite catalyst, endowing the composite catalyst superior stability.
  • 加载中
    1. [1]

      BALASUBRAMANIAN B, ORTIZ A L, KAYTAKOGLU S, HARRISON D P. Hydrogen from methane in a single-step process[J]. Chem Eng Sci, 1999,54(15):3543-3552.

    2. [2]

      SILVA J M, SORIA M A, MADEIRA L M. Thermodynamic analysis of glycerol steam reforming for hydrogen production with in situ hydrogen and carbon dioxide separation[J]. J Power Sources, 2015,273:423-430. doi: 10.1016/j.jpowsour.2014.09.093

    3. [3]

      ROMANO M C, CASSOTTI E N, CHIESA P, MEYER J, MASTIN J. Application of the sorption enhanced-steam reforming process in combined cycle-based power plants[J]. Energy Procedia, 2011,4(4):1125-1132.  

    4. [4]

      LYSIKOV A, DEREVSCHIKOV V, OKUNEV A. Sorption-enhanced reforming of bioethanol in dual fixed bed reactor for continuous hydrogen production[J]. Int J Hydrogen Energy, 2015,40(42):14436-14444. doi: 10.1016/j.ijhydene.2015.06.029

    5. [5]

      XUE X, WU S. The microstructure and stability of a Ni-nano-CaO/Al2O3 reforming catalyst under carbonation-calcination cycling conditions[J]. Int J Hydrogen Energy, 2015,40(16):5617-5623. doi: 10.1016/j.ijhydene.2015.02.032

    6. [6]

      LI M. Thermodynamic analysis of adsorption enhanced reforming of ethanol[J]. Int J Hydrogen Energy, 2009,34(23):9362-9372. doi: 10.1016/j.ijhydene.2009.09.054

    7. [7]

      JING J Y, LI T Y, ZHANG X W, WANG S D, FENG J, TURMEL W A, LI W Y. Enhanced CO2 sorption performance of CaO/Ca3Al2O6 sorbents and its sintering-resistance mechanism[J]. Appl Energy, 2017,199:225-233. doi: 10.1016/j.apenergy.2017.03.131

    8. [8]

      JING J Y, ZHANG X W, WANG S D, LI T Y, LI W Y. Improving CO2 sorption performance of CaO/Ca3Al2O6 sorbents by thermally pretreated in CO2 atmosphere[J]. Energy Procedia, 2017,142:3258-3263. doi: 10.1016/j.egypro.2017.12.500

    9. [9]

      GARCIA-LARIO A L, AZNAR M, GRASA G S, MURILLO R. Evaluation of process variables on the performance of sorption enhanced methane reforming[J]. J Power Sources, 2015,285:90-99. doi: 10.1016/j.jpowsour.2015.03.075

    10. [10]

      CHEN Y, MAHECHABOTERO A, LIM C J, GRACE J R, ZHANG J, ZHAO Y, ZHENG C. Hydrogen production in a sorption-enhanced fluidized-bed membrane reactor:Operating parameter investigation[J]. Ind Eng Chem Res, 2014,53(14):6230-6242. doi: 10.1021/ie500294k

    11. [11]

      RADFARNIA H R, ILIUTA M C. Hydrogen production by sorption-enhanced steam methane reforming process using CaO-Zr/Ni bifunctional sorbent-catalyst[J]. Chem Eng Process, 2014,86:96-103. doi: 10.1016/j.cep.2014.10.014

    12. [12]

      CHANBURANASIRI N, RIBEIRO A M, RODRIGUES A E, ARPORNWICHANOP A, LAOSIRIPOJANA N, PRASERTHDAM P, ASSABUMRUNGRAT S. Hydrogen production via sorption enhanced steam methane reforming process using Ni/CaO multifunctional catalyst[J]. Ind Eng Chem Res, 2011,50(24):69-86.

    13. [13]

      RADFRNIA H R, ILIUTA M C. Development of Al-stabilized CaO-nickel hybrid sorbent-catalyst for sorption-enhanced steam methane reforming[J]. Chem Eng Sci, 2014,109(16):212-219.

    14. [14]

      CESARIO M R, BARROS B S, COURSON C, MELO D M A, KIENNEMANN A. Catalytic performances of Ni-CaO-mayenite in CO2 sorption enhanced steam methane reforming[J]. Fuel Process Technol, 2015,131:247-253. doi: 10.1016/j.fuproc.2014.11.028

    15. [15]

      XU P, ZHOU Z, ZHAO C, CHENG Z. Ni/CaO-Al2O3 bifunctional catalysts for sorption-enhanced steam methane reforming[J]. AIChE J, 2015,60(10):3547-3556.

    16. [16]

      PHROMPRASIT J, POWELL J, WONGSAKULPHASATCH S, KIATKITTIPONG W, BUMROONGSAKULSAWAT P, ASSABUMRUNGRAT S. Activity and stability performance of multifunctional catalyst (Ni/CaO and Ni/Ca12Al14O33-CaO) for bio-hydrogen production from sorption enhanced biogas steam reforming[J]. Int J Hydrogen Energy, 2016,41(18):7318-7331. doi: 10.1016/j.ijhydene.2016.03.125

    17. [17]

      WU K, JING J Y, LI W Y. Calcination temperature influence on the catalytic performance of Ni/CeO2-ZrO2 for low temperature steam reforming of methane[C]//31st Annual International Pittsburgh Coal Conference, 2014. Pittsburgh, PA, USA.

    18. [18]

      LI T Y, JING J Y, FENG J, LI W Y. Carbon dioxide capture over Al-doped CaO-based sorbents with enhanced reactive stability in cyclic operations[C]//2015 Internation Conference on Coal Science and Technology, 2015. Australia.

    19. [19]

      JING Jie-ying, WANG Shi-dong, ZHANG Xue-wei, LI Qing, LI Wen-ying. Influence of Ca/Al molar ratio on the structure and catalytic reforming performance of Ni/CaO-Al2O3 catalyst[J]. J Fuel Chem Technol, 2017,45(8):956-962.  

    20. [20]

      WU C H, CHANG Y P, CHEN S Y, LIU D M, YU C T, PEN B L. Characterization and structure evolution of Ca-Al-CO3 hydrotalcite film for high temperature CO2 adsorption[J]. J Nanosci Nanotechnol, 2010,10(7):4716-4720. doi: 10.1166/jnn.2010.1708

    21. [21]

      CHANG P H, CHANG Y P, CHEN S Y, YY C T, CHYOU Y P. Ca-rich Ca-Al-oxide, high-temperature-stable sorbents prepared from hydrotalcite precursors:Synthesis, characterization, and CO2 capture capacity[J]. ChemSusChem, 2011,4(12):1844-1851. doi: 10.1002/cssc.v4.12

    22. [22]

      ZHANG Fan, WU Rong, WU Su-fang. The preparation of a type of NiO-CaO sorption complex catalyst by hydrothermal precipitation method and its application in ReSER process[J]. J Chem Eng Chin Univ, 2014,28(5):985-991.  

  • 加载中
    1. [1]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    2. [2]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    3. [3]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    4. [4]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    9. [9]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    10. [10]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    11. [11]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    15. [15]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    16. [16]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    17. [17]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    18. [18]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

Metrics
  • PDF Downloads(8)
  • Abstract views(1537)
  • HTML views(522)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return