Citation: Hou Jinpeng, Zhang Qiuyan, Xu Zhuang, Guo Ruili, Li Xueqin. Research Progress in Fillers of Mixed Matrix Membrane Based on CO2 Separation[J]. Chemistry, ;2018, 81(5): 402-408. shu

Research Progress in Fillers of Mixed Matrix Membrane Based on CO2 Separation

  • Corresponding author: Li Xueqin, xueqinli@shzu.edu.cn
  • Received Date: 12 September 2017
    Accepted Date: 23 February 2018

Figures(2)

  • Efficient, green and low-energy CO2 capture technology is the key to solving the problem of energy gas purification and greenhouse gas emission reduction. Membrane separation technology has potential prospects for development because of its high efficiency, energy saving, low carbon and other characteristics in the field of CO2 capture. At present, the study of CO2 separation membrane mainly focuses on the filler in mixed matrix membrane (MMMs), and the "trade-off" effect between membrane permeability and selectivity is controlled by adjusting the filler. MMMs separation technology show a good application prospects in the field of gas separation. In recent years, researchers have found that the filler is usually a key factor affecting separation performance of the MMMs, and the use of different fillers can improve the gas separation performance of the mixed matrix membrane. This paper summarizes the filler that has been developed at present, so as to provide a reference for the design and development of new MMMs for CO2 separation.
  • 加载中
    1. [1]

      Q Xin, H Liu, Y Zhang et al. J. Membr. Sci., 2017, 525:330~341. 

    2. [2]

      J K Adewole, A L Ahmad, S Ismail et al. Int. J. Greenh. Gas. Con., 2013, 17:46~65. 

    3. [3]

       

    4. [4]

      S Wang, X Li, H Wu et al. Energy. Environ. Sci., 2016, 9(6):1863~1890. 

    5. [5]

      I C Omole, R T Adams, S J Miller et al. Ind. Eng. Chem. Res., 2010, 49(10):4887~4896. 

    6. [6]

      H Rao, Z Zhang, Y Tian. AIChE J., 2013, 59(2):650~655. 

    7. [7]

      N Jusoh, Y F Yeong, T L Chew et al. Sep. Purif. Rev., 2016, 45(4):321~344. 

    8. [8]

      L M Robeson. J. Membr. Sci., 2008, 320:390~400. 

    9. [9]

      A Jamil, O P Ching, A Shariff. Chem. Eng. Technol., 2016, 39(8):1393~1405. 

    10. [10]

    11. [11]

      M Zhou, D Korelskiy, P Ye et al. Angew. Chem. Int. Ed., 2014, 53(13):3492~3495. 

    12. [12]

      S Zhao, P H M Feron, L Deng et al. J. Membr. Sci., 2016, 511:180~206. 

    13. [13]

       

    14. [14]

    15. [15]

    16. [16]

       

    17. [17]

      X Li, L Ma, H Zhang et al. J. Membr. Sci., 2015, 479:1~10. 

    18. [18]

      M Rezakazemi, A E Amooghin, M M Montazer-Rahmati et al. Prog. Polym. Sci., 2014, 39(5):817~861. 

    19. [19]

      T S Chung, L Y Jiang, Y Li et al. Prog. Polym. Sci., 2007, 32(4):483~507. 

    20. [20]

      C H Lau, T S Chung. Macromolecules, 2011, 44(15):6057~6066. 

    21. [21]

      M A Priolo, K M Holder, D Gamboa et al. Langmuir, 2011, 27(19):12106~12114. 

    22. [22]

      M Peyravi, M Jahanshahi, A Rahimpour et al. Chem. Eng. J., 2014, 241:155~166. 

    23. [23]

      S M Lee, V Ischenko, E Pippel et al. Adv. Funct. Mater., 2011, 21(16):3047~3055. 

    24. [24]

      R Lin, L Ge, L Hou et al. ACS. Appl. Mater. Interf., 2014, 6(8):5609~5618. 

    25. [25]

      H Vinh-Thang, S Kaliaguine. Chem. Rev., 2013, 113(7):4980~5028. 

    26. [26]

      Y Zhang, X Feng, Yuan S et al. Inorg. Chem. Front., 2016, 3(7):896~909. 

    27. [27]

    28. [28]

      M Sadeghi, M A Semsarzadeh, M Barikani et al. J. Membr. Sci., 2011, 376(1):188~195. 

    29. [29]

    30. [30]

      F Moghadam, M R Omidkhah, E Vasheghani-Farahani et al. Sep. Purif. Technol., 2011, 77(1):128~136. 

    31. [31]

      S M Momeni, M Pakizeh. Braz. J. Chem. Eng., 2013, 30(3):589~597. 

    32. [32]

    33. [33]

      A F Bushell, M P Attfield, C R Mason et al. J. Membr. Sci., 2013, 427:48~62. 

    34. [34]

      A F Ismail, N H Rahim, A Mustafa et al. Sep. Purif. Technol., 2011, 80(1):20~31. 

    35. [35]

       

    36. [36]

       

    37. [37]

      B Zornoza, O Esekhile, W J Koros et al. Sep. Purif. Technol., 2011, 77(1):137~145. 

    38. [38]

      K Vanherck, A Aerts, J Martens et al. Chem. Commun., 2010, 46(14):2492~2494. 

    39. [39]

      N Navascués, C Téllez, J Coronas. Micropor. Mesopor. Mater., 2008, 112(1):561~572. 

    40. [40]

      K Vanherck, A Aerts, J Martens et al. Chem. Commun., 2010, 46(14):2492~2494. 

    41. [41]

      H Wu, X Li, Y Li et al. J. Membr. Sci., 2014, 465:78~90. 

    42. [42]

      A Ghadimi, T Mohammadi, N Kasiri. Ind. Eng. Chem. Res., 2014, 53(44):17476~17486. 

    43. [43]

      W Kim, J S Lee, D G Bucknall et al. J. Membr. Sci., 2013, 441:129~136. 

    44. [44]

      S Choi, J Coronas, E Jordan et al. Angew. Chem. Int. Ed., 2008, 47(3):552~555. 

    45. [45]

      W Li, X Zheng, Z Dong et al. J. Phys. Chem. C, 2016, 120(45):26061~26066. 

    46. [46]

      Y Hu, J Wei, Y Liang et al. Angew. Chem. Int. Ed., 2015, 55(6):2048~2052.

    47. [47]

    48. [48]

      J Shen, M Zhang, G Liu et al. AIChE J., 2016, 62(8):2843~2852. 

    49. [49]

      Q Xue, X Pan, X Li et al. Nanotechnology, 2017, 28(6):065702. 

    50. [50]

    51. [51]

      D S Sholl, J K Johnson. Science, 2006, 312(5776):1003~1004. 

    52. [52]

      S Kim, J R Jinschek, H Chen et al. Nano Lett., 2007, 7(9):2806~2811. 

    53. [53]

      M A Aroon, A F Ismail, T Matsuura. Sep. Purif. Technol., 2013, 115:39~50. 

    54. [54]

      A Elliot. Chem. Commun., 2016, 52(79):11768~11771. 

    55. [55]

    56. [56]

      B A Al-Maythalony, A M Alloush, M Faizan et al. ACS. Appl. Materf. Interf., 2017, 13:25.

    57. [57]

      N A H M Nordin, A F Ismail, A Mustafa et al. RSC Adv., 2015, 5(38):30206~30215. 

    58. [58]

      M S Boroglu, A B Yumru. Sep. Purif. Technol., 2017, 173:269~279. 

    59. [59]

      M Sarfraz, M Ba-Shammakh. J. Ind. Eng. Chem., 2016, 36:154~162. 

    60. [60]

      M Sarfraz, M Ba-Shammakh. Arab. J. Sci. Eng., 2016, 41(7):2573~2582. 

    61. [61]

      E Ahmadi Feijani, A Tavasoli, H Mahdavi. Ind. Eng. Chem. Res., 2015, 54(48):12124~12134. 

    62. [62]

      B Zornoza, A Martinez-Joaristi, P Serra-Crespo et al. Chem. Commun., 2011, 47(33):9522~9524. 

    63. [63]

      T Rodenas, M van Dalen, E García-Pérez et al. Adv. Funct. Mater., 2014, 24(2):249~256. 

    64. [64]

      E Ahmadi Feijani, A Tavasoli, H Mahdavi. Ind. Eng. Chem. Res., 2015, 54(48):12124~12134. 

    65. [65]

      H B Tanh Jeazet, S Sorribas, J M Román-Marín et al. Eur. J. Inorg. Chem., 2016, 2016(27):4363~4367. 

    66. [66]

      T Khosravi, M Omidkhah, S Kaliaguine et al. Can. J. Chem. Eng., 2017, 95(10):2024~2033. 

    67. [67]

       

    68. [68]

      M R Khdhayyer, E Esposito, A Fuoco et al. Sep. Purif. Technol. 2017, 173:304~313. 

    69. [69]

      R Lin, L Ge, H Diao et al. ACS. Appl. Mater. Interf., 2016, 8(46):32041~32049. 

  • 加载中
    1. [1]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    2. [2]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    3. [3]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    4. [4]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    5. [5]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    6. [6]

      Shasha SUNWeichun HUANGMengke WANG . Research progress of interface regulation strategies and applications of two‑dimensional MXenes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1465-1482. doi: 10.11862/CJIC.20240430

    7. [7]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    8. [8]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    9. [9]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    10. [10]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    11. [11]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    12. [12]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    15. [15]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    16. [16]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    17. [17]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    18. [18]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    19. [19]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    20. [20]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

Metrics
  • PDF Downloads(34)
  • Abstract views(3485)
  • HTML views(726)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return