Citation: LI Yuan-yuan, HUANG Yan, TANG Nan, YAN Run-hua, HU Zhen-yu, XIAO Rao, FU Qing, ZHAO Ling-kui, ZHANG Jun-feng, YANG Liu-chun. Study on the performance of low temperature NH3-SCR over MnO2 nano-catalyst with different crystal structures[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(5): 578-584. shu

Study on the performance of low temperature NH3-SCR over MnO2 nano-catalyst with different crystal structures

  • Corresponding author: HUANG Yan, xtuhy@163.com
  • Received Date: 15 January 2018
    Revised Date: 20 March 2018

    Fund Project: the Platform Open Innovation Fund Project in Hunan Province Colleges and Universities 14K094The project was supported by the Platform Open Innovation Fund Project in Hunan Province Colleges and Universities (14K094)

Figures(7)

  • To investigate the relationship between the structure and catalytic activity, four types of MnO2 nano-catalysts with various crystal structures (α-MnO2, β-MnO2, γ-MnO2 and δ-MnO2) were synthesized by hydrothermal method, and their low temperature NH3-SCR activity were tested. The results indicated that catalysts with different structures showed various activities which followed the sequence of γ-MnO2 > α-MnO2 > β-MnO2 > δ-MnO2. It was found that γ-MnO2 showed highest catalytic activity and its NOx conversion rate surpassed 90% at the temperature range of 150-260℃. The catalysts were characterized by X-ray diffraction(XRD), scanning electron microscopy (SEM), N2 adsorption-desorption, thermogravimetric(TG), infrared (FT-IR), temperature programmed reduction(H2-TPR) and pyridine infrared spectroscopy (Py-FTIR). It was inferred that the morphology of the α-MnO2 and β-MnO2 were nanorods, while γ-MnO2 and δ-MnO2 with the structures of nanoneedles. The specific surface area of the catalyst was not the dominant factor affecting the NH3-SCR activity at low temperature. The decent pore structure, strong redox property, abundant chemisorption oxygen and Lewis acid sites were responsible for high low temperature NH3-SCR activity of γ-MnO2 nano-catalyst.
  • 加载中
    1. [1]

      PÂRVULESCU V I, GRANGE P, DELMON B. Catalytic removal of NO[J]. Catal Today, 1998,46(4):233-316. doi: 10.1016/S0920-5861(98)00399-X

    2. [2]

      ROY S, HEGDE MS, MADRAS G. Catalysis for NOx abatement[J]. Appl Energy, 2009,86(11):2283-2297. doi: 10.1016/j.apenergy.2009.03.022

    3. [3]

      LIU C, SHI J-W, GAO C, NIU C. Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3:A review[J]. Appl Catal A:Gen, 2016,522:54-69. doi: 10.1016/j.apcata.2016.04.023

    4. [4]

      YANG Yong-li, XU Dong-yao, CHAO Chun-yan, GAO Ming. Research advance review on supported Mn-based catalysts at low-temperature selective catalytic reduction of NOx with NH3[J]. Chem Ind Eng Prog, 2016,35(4):1094-1100.  

    5. [5]

      LIU Ting, WANG Ting-chun, WU Rui-qing, SHEN Bo-xiong. Research advance review for low-temperature NH3 -SCR catalysts[J]. J Saf Environ, 2012,19(6):42-44.  

    6. [6]

      KAPTEIJN F, SINGOREDJO L, ANDREINI A, MOULIJN J A. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia[J]. Appl Catal B:Environ, 1994,3(2/3):173-189.  

    7. [7]

      LIU Lin-lin, TIAN Hua, HE Jun-hui, YANG Qiao-wen, WANG Dong. Progress in cryptomelane-and birnessite manganese oxides[J]. Chem Bull, 2011,74(4):000291-000297.  

    8. [8]

      THACKERAY M M. Manganese oxides for lithium batteries[J]. Prog Solid State Chem, 1997,25(1/2):1-71.  

    9. [9]

      LIANG S, TENG F, BULGAN G, RUILONG ZONG A, ZHU Y. Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation[J]. J Phys Chem C, 2010,112(14):5307-5315.  

    10. [10]

      ZHANG J, LI Y, WANG L, ZHANG C, HE H. Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures[J]. Catal Sci Technol, 2015,5(4):2305-2313. doi: 10.1039/C4CY01461H

    11. [11]

      DAI Yun, LI Jun-hua, PENG Yue, TANG Xing-fu. Effects of MnO2 crystal structure and surface property on the NH3-SCR reaction at low temperature[J]. Acta Phys Chim Sin, 2012,28(7):1771-1776.  

    12. [12]

      LI Y, LI Y, WAN Y, ZHAN S, GUAN Q, TIAN Y. Structure-performance relationships of MnO2nanocatalyst for the low-temperature SCR removal of NOx under ammonia[J]. RSC Adv, 2016,6(60):54926-54937. doi: 10.1039/C6RA03108K

    13. [13]

      SUN Meng-ting, HUANG Bi-chun, MA Jie-wen, LI Shi-hui, DONG Li-fu. Morphological effects of manganese dioxide on catalytic reactions for low-temperature NH3-SCR[J]. Acta Phys Chim Sin, 2016,32(6):1501-1510. doi: 10.3866/PKU.WHXB201603171

    14. [14]

      SUN M, LAN B, YU L, YE F, SONG W, HE J, DIAO G, ZHENG Y. Manganese oxides with different crystalline structures:Facile hydrothermal synthesis and catalytic activities[J]. Mater Lett, 2012,86:18-20. doi: 10.1016/j.matlet.2012.07.011

    15. [15]

      WANG Yan-cai, LIU Xin, NING Ping, ZHANG Qiu-lin, ZHANG Jin-hui, XU Li-si, TANG Xiao-su, WANG Ming-zhi. Effect of preparation methods on selective catalytic reduction of NOx with NH3 over manganese oxide octahedral molecular sieves[J]. J Fuel Chem Technol, 2014,42(11):1357-1364. doi: 10.3969/j.issn.0253-2409.2014.11.013 

    16. [16]

      SU Qian, HUANG Yan, ZHANG Yin, LI Yuan-yuan, TANG Nan, ZHANG Jun-fen, YANG Liu-chun. Effects of copper sources on selective catalytic reduction of NO with NH3 of Cu-SAPO-34[J]. J Mol Catal, 2016,30(2):151-158.  

    17. [17]

      GIOVANOLI R. Thermogravimetry of manganese dioxides[J]. Thermochim Acta, 1994,234(94):303-313.  

    18. [18]

      WANG C, SUN L, CAO Q, HU B, HUANG Z, TANG X. Surface structure sensitivity of manganese oxides for low-temperature selective catalytic reduction of NO with NH3[J]. Appl Catal B:Environ, 2011,101(3/4):598-605.  

    19. [19]

      WANG ZM, KANOH H. Calorimetric study on NH3 insertion reaction into microporous manganese oxides with (2×2) tunnel and (2×∞) layered structures[J]. Thermochim Acta, 2001,379(1):7-14.  

    20. [20]

      GUO Xue-yi, LIU Hai-han, LI Dong, TIAN Qing-hua, XU Gang. Influence of thermal treatment on the crystal phase transformation of MnO2[J]. Min Metal Eng, 2007,27(1):50-53.  

    21. [21]

      AND S D, MUNICHANDRAIAH N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties[J]. J Phys Chem C, 2008,112(11):4406-4417. doi: 10.1021/jp7108785

    22. [22]

      LI Y, FAN Z, SHI J, LIU Z, ZHOU J, SHANGGUAN W. Modified manganese oxide octahedral molecular sieves M'-OMS-2(M'=Co, Ce, Cu) as catalysts in post plasma-catalysis for acetaldehyde degradation[J]. Catal Today, 2015,256:178-185. doi: 10.1016/j.cattod.2015.02.003

    23. [23]

      XIE J, CHEN L, ZHOU W F, AU C T, YIN S F. Selective oxidation of p-chlorotoluene to p-chlorobenzaldehyde over metal-modified OMS-2 molecular sieves[J]. J Mol Catal A:Chem, 2016,425:110-115. doi: 10.1016/j.molcata.2016.09.038

    24. [24]

      XIN Qin, LUO Meng-fei. The Modern Catalytic Research Method[M]. Beijing:Science Press, 2009.

    25. [25]

      WU Z, JIANG B, LIU Y, WANG H, JIN R. DRIFT study of manganese/titania-based catalysts for low-temperature selective catalytic reduction of NO with NH3[J]. Environ Sci Technol, 2007,41(16):5812-5817. doi: 10.1021/es0700350

    26. [26]

      YU C, HUANG B, DONG L, CHEN F, LIU X. In situ FT-IR study of highly dispersed MnOx/SAPO-34 catalyst for low-temperature selective catalytic reduction of NOx by NH3[J]. Catal Today, 2017,281:610-620. doi: 10.1016/j.cattod.2016.06.025

  • 加载中
    1. [1]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    2. [2]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    3. [3]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    4. [4]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    7. [7]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    8. [8]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    9. [9]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    10. [10]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    11. [11]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    12. [12]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    13. [13]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    14. [14]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    15. [15]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    16. [16]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    17. [17]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    18. [18]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    19. [19]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    20. [20]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

Metrics
  • PDF Downloads(10)
  • Abstract views(1648)
  • HTML views(672)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return