Citation: WANG Sheng, HUANG Zhen, FANG Yue, QIN Feng, XU Hua-long, SHEN Wei. Direct synthesis of isoalkanes from syngas over ZnCrOx/HZSM-5 catalyst[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(10): 1218-1224. shu

Direct synthesis of isoalkanes from syngas over ZnCrOx/HZSM-5 catalyst

  • Corresponding author: SHEN Wei, wshen@fudan.edu.cn
  • Received Date: 2 April 2018
    Revised Date: 6 July 2018

    Fund Project: the Shanghai Science and Technology Committee 14DZ2273900the Ministry of Science and Technology of China 91645201the National Science and Technology Key Project of China 2017YFB0602204The project was supported by the National Science and Technology Key Project of China (2017YFB0602204), the Ministry of Science and Technology of China (91645201) and the Shanghai Science and Technology Committee (14DZ2273900)

Figures(6)

  • ZnCrOx composite oxide and HZSM-5 zeolite were prepared by using the coprecipitation and hydrothermal methods, respectively; after that, a bi-functional ZnCrOx/HZSM-5 catalyst was obtained through physical mixing of ZnCrOx with HZSM-5 and used in the direct synthesis of isoalkanes from syngas. The ZnCrOx/HZSM-5 catalyst was characterized by XRD, TEM, N2 sorption, and NH3-TPD and the effects of Si/Al ratio in HZSM-5 and the mass ratio of ZnCrOx to HZSM-5 (OX/ZEO mass ratio) on the catalytic performance of ZnCrOx/HZSM-5 in syngas conversion were investigated. The results indicated that with the increase of Si/Al ratio in HZSM-5, the catalyst acid density is decreased, resulting in a lower CO conversion but higher selectivity to C5+ products and higher isoparaffin fraction. Moreover, the selectivity to C5+ products is significantly increased by increasing the proportion of ZnCrOx components in the bifunctional catalyst without losing CO conversion. For the syngas conversion over ZnCrOx/HZSM-5 catalyst under the conditions of 400 ℃, 2.0 MPa, gas hourly space velocity (GHSV) of 3600 mL/(h·gcat), the conversion of syngas reaches 35%, with a selectivity of 44% to C5+ products and an isopentane fraction up to 65% in the C5+ products.
  • 加载中
    1. [1]

      TORRES GALVIS H M, BITTER J H, KHARE C B, RUITENBEEK M, DUGULAN A I, DE JONG K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012,335(6070):835-838. doi: 10.1126/science.1215614

    2. [2]

      FU X-P, SHEN Q-K, SHI D, WU K, JIN Z, WANG X, SI R, SONG Q-S, JIA C-J, YAN C-H. Co3O4-Al2O3 mesoporous hollow spheres as efficient catalyst for Fischer-Tropsch synthesis[J]. Appl Catal B:Environ, 2017,211:176-187. doi: 10.1016/j.apcatb.2017.04.036

    3. [3]

      ZHONG L, YU F, AN Y, ZHAO Y, SUN Y, LI Z, LIN T, LIN Y, QI X, DAI Y, GU L, HU J, JIN S, SHEN Q, WANG H. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature, 2016,538:84-87. doi: 10.1038/nature19786

    4. [4]

      LI X, FENG X, GE Q, FUJIMOTO K. Direct synthesis of iso-paraffins from syngas with slurry phase reaction[J]. Fuel, 2008,87(4):534-538.  

    5. [5]

      ZHAO B, ZHAI P, WANG P F, LI J Q, LI T, PENG M, ZHAO M, HU G, YANG Y, LI Y W, ZHANG Q, FAN W, MA D. Direct transformation of syngas to aromatics over Na-Zn-Fe5C2 and hierarchical HZSM-5 tandem catalysts[J]. Chem, 2017,3(2):323-333. doi: 10.1016/j.chempr.2017.06.017

    6. [6]

      JIAO F, LI J, PAN X, XIAO J, LI H, MA H, WEI M, PAN Y, ZHOU Z, LI M, MIAO S, LI J, ZHU Y F, XIAO D, HE T, YANG J H, QI F, FU Q, BAO X H. Selective conversion of syngas to light olefins[J]. Science, 2016,351(6277):1065-1068. doi: 10.1126/science.aaf1835

    7. [7]

      CHENG K, GU B, LIU X, KANG J, ZHANG Q, WANG Y. Direct and highly selective conversion of synthesis gas into lower olefins:design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angew Chem Int Ed, 2016,55(15):4725-4728. doi: 10.1002/anie.201601208

    8. [8]

      CHENG K, ZHOU W, KANG J, HE S, SHI S, ZHANG Q, PAN Y, WEN W, WANG Y. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem, 2017,3(2):334-347. doi: 10.1016/j.chempr.2017.05.007

    9. [9]

      YANG J, PAN X, JIAO F, LI J, BAO X. Direct conversion of syngas to aromatics[J]. Chem Commun, 2017,53(81):11146-11149. doi: 10.1039/C7CC04768A

    10. [10]

      ZHANG P, TAN L, YANG G, TSUBAKI N. One-pass selective conversion of syngas to paraxylene[J]. Chem Sci, 2017,8(12):7941-7946. doi: 10.1039/C7SC03427J

    11. [11]

      HOFF T C, THILAKARATNE R, GARDNER D W, BROWN R C, TESSONNIER J-P. Thermal stability of aluminum-rich ZSM-5 zeolites and consequences on aromatization reactions[J]. J Phys Chem C, 2016,120(36):20103-20113. doi: 10.1021/acs.jpcc.6b04671

    12. [12]

      PÉREZ-URIARTE P, GAMERO M, ATEKA A, DÍAZ M, AGUAYO A T, BILBAO J. Effect of the acidity of HZSM-5 zeolite and the binder in the DME transformation to olefins[J]. Ind Eng Chem Res, 2016,55(6):1513-1521. doi: 10.1021/acs.iecr.5b04477

    13. [13]

      BORTNOVSKY O, SAZAMA P, WICHTERLOVA B. Cracking of pentenes to C2-4 light olefins over zeolites and zeotypes role of topology and acid site strength and concentration[J]. Appl Catal A:Gen, 2005,287(2):203-213. doi: 10.1016/j.apcata.2005.03.037

  • 加载中
    1. [1]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    4. [4]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    5. [5]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    6. [6]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    7. [7]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    8. [8]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    9. [9]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    10. [10]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    11. [11]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    12. [12]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    13. [13]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    14. [14]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    15. [15]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    16. [16]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    17. [17]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    18. [18]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    19. [19]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    20. [20]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

Metrics
  • PDF Downloads(10)
  • Abstract views(1293)
  • HTML views(157)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return