Citation: XIANG Kang, SUN Zhi-gang, HE Jian-bo, JIA Jie, SUI Sheng. Hydrogen production from oxidation of coal slurries assisted by ferric ions[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(5): 621-627. shu

Hydrogen production from oxidation of coal slurries assisted by ferric ions

  • Corresponding author: SUI Sheng, ssui@sjtu.edu.cn
  • Received Date: 23 November 2015
    Revised Date: 1 March 2016

Figures(9)

  • A novel method of hydrogen production from oxidation of coal slurries using the mutual transformation of Fe3+ and Fe2+ was studied. At the first step, in a boiling kettle coal slurries are oxidized by Fe3+ into Fe2+. Then Fe2+ is oxidized in an anode chamber and hydrogen is produced in cathode chamber. The two steps are combined to form a cycle to produce hydrogen. Nine cycles were performed at constant voltage (1 V) and the current densities and accumulated electric quantities at each cycle were investigated. The coal samples before, during and after reaction were analyzed with scanning electron microscope (SEM), BET specific surface area, thermal gravity (TG) and Fourier transform infrared spectrum (FT-IR). The results show that hydrogen production of "two-step" cycle processes has a higher reaction rate. The initial current density is about 60 mA/cm2, while that of traditional "one-step" process is usually less than 10 mA/cm2. The characterizations give a clear understanding on the changes of coal particles in morphology, structure and composition during the cycles, and also reveal the reaction mechanism of mutual transformation between Fe3+ and Fe2+.
  • 加载中
    1. [1]

      SATHE N, BOTTE G G. Assessment of coal and graphite electrolysis on carbon fiber electrodes[J]. J Power Sources, 2006,161(1):513-523. doi: 10.1016/j.jpowsour.2006.03.075

    2. [2]

      COUGHLIN R W, FAROOQUE M. Hydrogen production from coal, water and electrons[J]. Nature (London), 1979,279(5711):301-303. doi: 10.1038/279301a0

    3. [3]

      COUGHLIN R W, FAROOQUE M. Thermodynamic, kinetic, and mass balance aspects of coal-depolarized water electrolysis[J]. Ind Eng Chem Proc Des Dev, 1982,21(4):559-564. doi: 10.1021/i200019a004

    4. [4]

      COUGHLIN R W, FAROOQUE M. Electrochemical gasification of coal-simultaneous production of hydrogen and carbon dioxide by a single reaction involving coal, water, and electrons[J]. Ind Eng Chem Proc Des Dev, 1980,19(2):211-219. doi: 10.1021/i260074a002

    5. [5]

      COUGHLIN R W, FAROOQUE M. Consideration of electrodes and electrolytes for electrochemical gasification of coal by anodic oxidation[J]. J Appl Electrochem, 1980,10(6):729-740. doi: 10.1007/BF00611276

    6. [6]

      ANTHONY K E, LINGE H G. Oxidation of coal slurries in acidified ferric sulfate[J]. J Electrochem Soc, 1983,130(11):2217-2219. doi: 10.1149/1.2119555

    7. [7]

      DHOOGE P M, STILWELL D E, PARK S M. Electrochemical studies of coal slurry oxidation mechanisms[J]. J Electrochem Soc, 1982,129(8):1719-1724. doi: 10.1149/1.2124257

    8. [8]

      DHOOGE P M, PARK S M. Electrochemistry of coal slurries Ⅱ. Studies on various experimental parameters affecting oxidation of coal slurries[J]. J Electrochem Soc, 1983, 1983,130(5):1029-1036.  

    9. [9]

      PATIL P, BOTTE G G. 206th Electrochemical Society Meeting[C]. Hawaii: The Electrochemical Society Inc, 2004: 559-565.

    10. [10]

      HESENOV A, MERYEMOGLU B, LCTEN O. Electrolysis of coal slurries to produce hydrogen gas: Effects of different factors on hydrogen yield[J]. Int J Hydrogen Energy, 2011,36(19):12249-12258. doi: 10.1016/j.ijhydene.2011.06.134

    11. [11]

      PATIL P, ABREU Y D, BOTTE G G. Electrooxidation of coal slurries on different electrode materials[J]. J Power Sources, 2006,158(1):368-377. doi: 10.1016/j.jpowsour.2005.09.033

    12. [12]

      FAROOQUE M, COUGHLIN R W. Electrochemical gasification of coal (investigation of operating conditions and variables)[J]. Fuel, 1979,58(10):705-712. doi: 10.1016/0016-2361(79)90066-8

    13. [13]

      DEMOZ A, KHULBE C, FAIRBRIDGE C, PETROVIC S. Iodide mediated electrolysis of acidic coke/coal suspension[J]. J Appl Electrochem, 2008,38(6):845-851. doi: 10.1007/s10800-008-9522-6

    14. [14]

      SEEHRA M S, RANGANATHAN S, MANIVANNAN A. Carbon-assisted water electrolysis: An energy-efficient process to produce pure hydrogen at room temperature[J]. Appl Phys Lett, 2007(90):044-104.

    15. [15]

      LIU Huan, WANG Zhi-zhong. Study on Volt-ampere characteristics of coal oxidation[J]. J Fuel Chem Technol, 2002,30(2):182-185.  

    16. [16]

      JIN X, BOTTE G G. Understanding the kinetics of coal electrolysis at intermediate temperatures[J]. J Power Sources, 2010,195(15):4935-4942. doi: 10.1016/j.jpowsour.2010.02.007

    17. [17]

      JIN X, BOTTE G G. Feasibility of hydrogen production from coal electrolysis at intermediate temperatures[J]. J Power Sources, 2007,171(2):826-834. doi: 10.1016/j.jpowsour.2007.06.209

    18. [18]

      JIA Jie, SUI Sheng, ZHU Xin-jian, HUANG Bo. Effect of kinetic factors on hydrogen production by coal slurry electrolysis[J]. J Fuel Chem Technol, 2013,2(2):139-143.  

    19. [19]

      THOMAS G, CHETTIAR M, BIRSS V I. Electrochemical oxidation of acidic Alberta coal slurries[J]. J Appl Electrochem, 1990,20(6):941-950. doi: 10.1007/BF01019569

  • 加载中
    1. [1]

      Mingjie Lei Wenting Hu Kexin Lin Xiujuan Sun Haoshen Zhang Ye Qian Tongyue Kang Xiulin Wu Hailong Liao Yuan Pan Yuwei Zhang Diye Wei Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083

    2. [2]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    3. [3]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    4. [4]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    5. [5]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    6. [6]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    7. [7]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    8. [8]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    9. [9]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    10. [10]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    11. [11]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    12. [12]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    13. [13]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    14. [14]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    15. [15]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    16. [16]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    17. [17]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    18. [18]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    19. [19]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    20. [20]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

Metrics
  • PDF Downloads(6)
  • Abstract views(1347)
  • HTML views(143)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return