Characteristics of NOx precursors and their formation mechanism during pyrolysis of herb residues
- Corresponding author: WU Chuang-zhi, wucz@ms.giec.ac.cn
Citation:
ZHAN Hao, YIN Xiu-li, HUANG Yan-qin, ZHANG Xiao-hong, YUAN Hong-you, XIE Jian-jun, WU Chuang-zhi. Characteristics of NOx precursors and their formation mechanism during pyrolysis of herb residues[J]. Journal of Fuel Chemistry and Technology,
;2017, 45(3): 279-288.
XU Guang-wen, JI Wen-feng, LIU Zhou-en, WAN Yin-hua, ZHANG Xiao-yong. Necessity and technical route of value-added utilization of biomass process residues in light industry[J]. Chin J Process Eng, 2009,9(3):618-624.
ZENG X, SHAO R Y, WANG F, DONG P W, YU J, XU G W. Industrial demonstration plant for the gasification of herb residue by fluidized bed two-stage process[J]. Bioresour Technol, 2016,206:93-98. doi: 10.1016/j.biortech.2016.01.075
DONG L, XU G W, SUDA T, MURAKAMI T. Potential approaches to improve gasification of high water content biomass rich in cellulose in dual fluidized bed[J]. Fuel Process Technol, 2010,91(8):882-888. doi: 10.1016/j.fuproc.2009.12.012
ZOU Yan-min, WU Jing-bo, YANG Liu-qing, ZHAO Jiang-li, WU Xiang-yang. Research development on the comprehensive utilization of Chinese herb residues[J]. Jiangsu J Tradit Chin Med, 2008,40(12):113-115.
XIAN Ping, ZHONG Li-ying, WANG Xiao-ying. The analyses of residue of anthoxylumnitidum decoction asgasification feedstock[J]. Renewable Energy Resour, 2007,25(1):26-28.
WANG P, ZHAN S H, YU H B, XUE X F, HONG N. The effects of temperature and catalysts on the pyrolysis of industrial wastes (herb residue)[J]. Bioresour Technol, 2010,101(9):3236-3241. doi: 10.1016/j.biortech.2009.12.082
GUO F Q, DONG Y P, DONG L, JING Y Z. An innovative example of herb residues recycling by gasification in a fluidized bed[J]. Waste Manage, 2013,33(4):825-832. doi: 10.1016/j.wasman.2012.12.009
GUO F Q, DONG Y P, ZHANG T H, DONG L, GUO C W, RAO Z H. Experimental study on herb residue gasification in an air-blown circulating fluidized bed gasifier[J]. Ind Eng Chem Res, 2014,53(34):13264-13273.
YANG Shuai, ZHANG Zhao-ling, MENG Jian-feng, DONG Yu-ping, LIANG Jing-cui, GAI Chao, FAN Peng-fei. Study on pyrolysis gasification of fungus residues in circulating fluidized beds[J]. J Chem Eng Chin Univ, 2015,29(4):997-1002.
YOU Zhan-ping, HAO Chang-sheng, JIAO Yong-gang, ZHAO Liang, FENG Chun-hong. Pyrolysis and combustion characteristics comparison studies of two kinds of antibiotic residues[J]. Ind Safety Environ Prot, 2016,42(5):41-43.
GONG Li-peng. Research on pyrolysis technology of terramycin bacterial residue[D]. Shijiazhuang:Hebei University of Science & Technology, 2012.
HANSSON K M, SAMUELSSON J, TULLIN C, AMAND L E. Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds[J]. Combust Flame, 2004,137(3):265-277. doi: 10.1016/j.combustflame.2004.01.005
GB 13271-2014, Emission standard of air pollutants for boiler[S].
BALAT M, BALAT M, KIRTAY E, BALAT H. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1:Pyrolysis systems[J]. Energ Convers Manage, 2009,50(12):3147-3157. doi: 10.1016/j.enconman.2009.08.014
TIAN F J, LI B Q, CHEN Y, LI C Z. Formation of NOx precursors during the pyrolysis of coal and biomass. Part Ⅴ. Pyrolysis of a sewage sludge[J]. Fuel, 2002,81(17):2203-2208. doi: 10.1016/S0016-2361(02)00139-4
BECIDAN M, SKREIBERG O, HUSTAD J E. NOx and N2O precursors (NH3 and HCN) in pyrolysis of biomass residues[J]. Energy Fuels, 2007,21(2):1173-1180. doi: 10.1021/ef060426k
YUAN S, ZHOU Z J, LI J, CHEN X L, WANG F C. HCN and NH3 released from biomass and soybean cake under rapid pyrolysis[J]. Energy Fuels, 2010,24(11):6166-6171. doi: 10.1021/ef100959g
REN Q Q, ZHAO C S, WU X, LIANG C, CHEN X P, SHEN J Z, WANG Z. Formation of NOx precursors during wheat straw pyrolysis and gasification with O2 and CO2[J]. Fuel, 2010,89(5):1064-1069. doi: 10.1016/j.fuel.2009.12.001
CHEN H F, WANG Y, XU G W, YOSHIKAWA K. Fuel-N evolution during the pyrolysis of industrial biomass wastes with high nitrogen content[J]. Energies, 2012,5(12):5418-5438. doi: 10.3390/en5125418
TIAN F J, YU J L, MCKENZIE L J, HAYASHI J, LI C Z. Conversion of fuel-N into HCN and NH3 during the pyrolysis and gasification in steam:A comparative study of coal and biomass[J]. Energy Fuels, 2007,21(2):517-521. doi: 10.1021/ef060415r
AZNAR M, ANSELMO M S, MANYA J J, MURILLO M B. Experimental study examining the evolution of nitrogen compounds during the gasification of dried sewage sludge[J]. Energy Fuels, 2009,23:3236-3245. doi: 10.1021/ef801108s
KELEMEN S R, AFEWORKI M, GORBATY M L, KWIATEK P J, SANSONE M, WALTERS C C, COHEN A D. Thermal transformations of nitrogen and sulfur forms in peat related to coalification[J]. Energy Fuels, 2006,20(2):635-652. doi: 10.1021/ef050307p
TIAN Y, ZHANG J, ZUO W, CHEN L, CUI Y N, TAN T. Nitrogen conversion in relation to NH3 and HCN during microwave pyrolysis of sewage sludge[J]. Environ Sci Technol, 2013,47(7):3498-3505.
WEI L H, WEN L, YANG T H, ZHANG N. Nitrogen transformation during sewage sludge pyrolysis[J]. Energy Fuels, 2015,29(8):5088-5094. doi: 10.1021/acs.energyfuels.5b00792
ZHANG J, TIAN Y, CUI Y N, ZUO W, TAN T. Key intermediates in nitrogen transformation during microwave pyrolysis of sewage sludge:A protein model compound study[J]. Bioresour Technol, 2013,132:57-63. doi: 10.1016/j.biortech.2013.01.008
CHEN H F, NAMIOKA T, YOSHIKAWA K. Characteristics of tar, NOx precursors and their absorption performance with different scrubbing solvents during the pyrolysis of sewage sludge[J]. Appl Energy, 2011,88(12):5032-5041. doi: 10.1016/j.apenergy.2011.07.007
TIAN K, LIU W J, QIAN T T, JIANG H, YU H Q. Investigation on the evolution of N-containing organic compounds during pyrolysis of sewage sludge[J]. Environ Sci Technol, 2014,48(18):10888-10896. doi: 10.1021/es5022137
BEIS S H, ONAY O, KOCKAR O M. Fixed-bed pyrolysis of safflower seed:Influence of pyrolysis parameters on product yields and compositions[J]. Renewable Energy, 2002,26(1):21-32. doi: 10.1016/S0960-1481(01)00109-4
TIAN F J, YU J L, MCKENZIE L J, HAYASHI J, LI C Z. Formation of NOx precursors during the pyrolysis of coal and biomass. Part Ⅸ. Effects of coal ash and externally loaded-Na on fuel-N conversion during the reforming of coal and biomass in steam[J]. Fuel, 2006,85(10/11):1411-1417.
REN Q Q, ZHAO C S, WU X, LIANG C, CHEN X P, SHEN J Z, TANG G Y, WANG Z. Effect of mineral matter on the formation of NOx precursors during biomass pyrolysis[J]. J Anal Appl Pyrolysis, 2009,85(1/2):447-453.
REN Q Q, ZHAO C S, WU X, LIANG C, CHEN X P, SHEN J Z, WANG Z. Catalytic effects of Fe, Al and Si on the formation of NOx precursors and HCl during straw pyrolysis[J]. J Therm Anal Calorim, 2010,99(1):301-306. doi: 10.1007/s10973-009-0150-0
ZHOU J Q, GAO P, DONG C Q, YANG Y P. TG-FTIR analysis of nitrogen conversion during straw pyrolysis:A model compound study[J]. J Fuel Chem Technol, 2015,43(12):1427-1432. doi: 10.1016/S1872-5813(16)30001-9
YUAN Shuai, LI Jun, CHEN Xue-li, DAI Zheng-hua, ZHOU Zhi-jie, WANG Fu-chen. Study on NH3 and HCN formation mechanisms during rapid pyrolysis of pyrrolic nitrogen[J]. J Fuel Chem Technol, 2011,39(11):801-805.
Wenqing Deng , Fanfeng Deng , Ting Zhang , Junjie Lin , Liang Zhao , Gang Li , Yi Pan , Jiebin Yang . Continuous measurement of reactive ammonia in hydrogen fuel by online dilution module coupled with Fourier transform infrared spectrometer. Chinese Chemical Letters, 2025, 36(3): 110085-. doi: 10.1016/j.cclet.2024.110085
Peiling Li , Qing Feng , Hongling Yuan , Qin Wang . Live Interview Recording about the Penicillin Family. University Chemistry, 2024, 39(9): 122-127. doi: 10.3866/PKU.DXHX202311022
Yang Li , Yanan Dong , Zhihong Wei , Changzeng Yan , Zhen Li , Lin He , Yuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206
Jijoe Samuel Prabagar , Kumbam Lingeshwar Reddy , Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564
Hong Wu , Yuxi Wang , Hongyan Feng , Xiaokui Wang , Bangkun Jin , Xuan Lei , Qianghua Wu , Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395
Zhongxin YU , Wei SONG , Yang LIU , Yuxue DING , Fanhao MENG , Shuju WANG , Lixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304
Feibin Wei , Yongfang Rao , Yu Huang , Wei Wang , Hui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931
Cuiwu MO , Gangmin ZHANG , Chao WU , Zhipeng HUANG , Chi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045
Xinghai Li , Zhisen Wu , Lijing Zhang , Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041
Runze Liu , Yankai Bian , Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042
Qiqi Li , Su Zhang , Yuting Jiang , Linna Zhu , Nannan Guo , Jing Zhang , Yutong Li , Tong Wei , Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
Hexing SONG , Zan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402
Lijun Yan , Shiqi Chen , Penglu Wang , Xiangyu Liu , Lupeng Han , Tingting Yan , Yuejin Li , Dengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132
(a): HTW; (b): PMW
(a): slow pyrolysis-15 ℃/min; (b): rapid pyrolysis
(a): ratio of HCN-N/NH3-N; (b): total yield of NOx precursors
(a): ratio of HCN-N/NH3-N; (b): total yield of NOx precursors
(a): ratio of HCN-N/NH3-N; (b): total yield of NOx precursors
(a), (b), (c), (d): 300, 500, 700, 800 ℃-HTW; (e), (f), (g), (h): 300, 500, 700, 800 ℃-PMW
(a): HTW; (b): PMW
(a): HTW; (b): PMW