Citation: ZHAN Hao, YIN Xiu-li, HUANG Yan-qin, ZHANG Xiao-hong, YUAN Hong-you, XIE Jian-jun, WU Chuang-zhi. Characteristics of NOx precursors and their formation mechanism during pyrolysis of herb residues[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(3): 279-288. shu

Characteristics of NOx precursors and their formation mechanism during pyrolysis of herb residues

  • Corresponding author: WU Chuang-zhi, wucz@ms.giec.ac.cn
  • Received Date: 24 November 2016
    Revised Date: 6 January 2017

    Fund Project: the National Natural Science Foundation of China 51676195the National Natural Science Foundation of China 51661145022

Figures(10)

  • Based on two herb residues-herbal tea waste (HTW) and penicillin mycelial waste (PMW), characteristics of NOx precursors during their pyrolysis were investigated in a horizontal tubular reactor with the help of XPS and TGA technologies. Effects of thermal conditions and physicochemical properties of fuels were discussed and compared. The results demonstrate that protein-N is the main nitrogen form for both HTW and PMW, determining the dominance of NH3 among NOx precursors at any operational conditions. Thermal conditions would still change the ratio and total yield by intrinsically influencing their formation pathways. Subsequently, the effects could be sequenced as follows:high temperatures with rapid pyrolysis > high temperatures with slow pyrolysis > low temperatures with rapid pyrolysis ≈ low temperatures with slow pyrolysis. Moreover, at high temperatures with rapid pyrolysis, increase in particle size or decrease in moisture content would result in reduction of total yield by 5%-11% and 4%-6%, respectively. In addition, NH3 yield is produced at low temperatures or slow pyrolysis with sequence of PMW > HTW and vice versa, depending on components in the fuels. Consequently, analyses on nitrogen forms in char and nitrogen distribution indicate that total yield of 20%-45% is observed to be independent of fuel type under typical pyrolysis conditions, which may provide helpful guidance for the clean reutilization of herb residues.
  • 加载中
    1. [1]

      XU Guang-wen, JI Wen-feng, LIU Zhou-en, WAN Yin-hua, ZHANG Xiao-yong. Necessity and technical route of value-added utilization of biomass process residues in light industry[J]. Chin J Process Eng, 2009,9(3):618-624.  

    2. [2]

      ZENG X, SHAO R Y, WANG F, DONG P W, YU J, XU G W. Industrial demonstration plant for the gasification of herb residue by fluidized bed two-stage process[J]. Bioresour Technol, 2016,206:93-98. doi: 10.1016/j.biortech.2016.01.075

    3. [3]

      DONG L, XU G W, SUDA T, MURAKAMI T. Potential approaches to improve gasification of high water content biomass rich in cellulose in dual fluidized bed[J]. Fuel Process Technol, 2010,91(8):882-888. doi: 10.1016/j.fuproc.2009.12.012

    4. [4]

      ZOU Yan-min, WU Jing-bo, YANG Liu-qing, ZHAO Jiang-li, WU Xiang-yang. Research development on the comprehensive utilization of Chinese herb residues[J]. Jiangsu J Tradit Chin Med, 2008,40(12):113-115.  

    5. [5]

      XIAN Ping, ZHONG Li-ying, WANG Xiao-ying. The analyses of residue of anthoxylumnitidum decoction asgasification feedstock[J]. Renewable Energy Resour, 2007,25(1):26-28.  

    6. [6]

      WANG P, ZHAN S H, YU H B, XUE X F, HONG N. The effects of temperature and catalysts on the pyrolysis of industrial wastes (herb residue)[J]. Bioresour Technol, 2010,101(9):3236-3241. doi: 10.1016/j.biortech.2009.12.082

    7. [7]

      GUO F Q, DONG Y P, DONG L, JING Y Z. An innovative example of herb residues recycling by gasification in a fluidized bed[J]. Waste Manage, 2013,33(4):825-832. doi: 10.1016/j.wasman.2012.12.009

    8. [8]

      GUO F Q, DONG Y P, ZHANG T H, DONG L, GUO C W, RAO Z H. Experimental study on herb residue gasification in an air-blown circulating fluidized bed gasifier[J]. Ind Eng Chem Res, 2014,53(34):13264-13273.  

    9. [9]

      YANG Shuai, ZHANG Zhao-ling, MENG Jian-feng, DONG Yu-ping, LIANG Jing-cui, GAI Chao, FAN Peng-fei. Study on pyrolysis gasification of fungus residues in circulating fluidized beds[J]. J Chem Eng Chin Univ, 2015,29(4):997-1002.  

    10. [10]

      YOU Zhan-ping, HAO Chang-sheng, JIAO Yong-gang, ZHAO Liang, FENG Chun-hong. Pyrolysis and combustion characteristics comparison studies of two kinds of antibiotic residues[J]. Ind Safety Environ Prot, 2016,42(5):41-43.  

    11. [11]

      GONG Li-peng. Research on pyrolysis technology of terramycin bacterial residue[D]. Shijiazhuang:Hebei University of Science & Technology, 2012.

    12. [12]

      HANSSON K M, SAMUELSSON J, TULLIN C, AMAND L E. Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds[J]. Combust Flame, 2004,137(3):265-277. doi: 10.1016/j.combustflame.2004.01.005

    13. [13]

      GB 13271-2014, Emission standard of air pollutants for boiler[S].

    14. [14]

      BALAT M, BALAT M, KIRTAY E, BALAT H. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1:Pyrolysis systems[J]. Energ Convers Manage, 2009,50(12):3147-3157. doi: 10.1016/j.enconman.2009.08.014

    15. [15]

      TIAN F J, LI B Q, CHEN Y, LI C Z. Formation of NOx precursors during the pyrolysis of coal and biomass. Part Ⅴ. Pyrolysis of a sewage sludge[J]. Fuel, 2002,81(17):2203-2208. doi: 10.1016/S0016-2361(02)00139-4

    16. [16]

      BECIDAN M, SKREIBERG O, HUSTAD J E. NOx and N2O precursors (NH3 and HCN) in pyrolysis of biomass residues[J]. Energy Fuels, 2007,21(2):1173-1180. doi: 10.1021/ef060426k

    17. [17]

      YUAN S, ZHOU Z J, LI J, CHEN X L, WANG F C. HCN and NH3 released from biomass and soybean cake under rapid pyrolysis[J]. Energy Fuels, 2010,24(11):6166-6171. doi: 10.1021/ef100959g

    18. [18]

      REN Q Q, ZHAO C S, WU X, LIANG C, CHEN X P, SHEN J Z, WANG Z. Formation of NOx precursors during wheat straw pyrolysis and gasification with O2 and CO2[J]. Fuel, 2010,89(5):1064-1069. doi: 10.1016/j.fuel.2009.12.001

    19. [19]

      CHEN H F, WANG Y, XU G W, YOSHIKAWA K. Fuel-N evolution during the pyrolysis of industrial biomass wastes with high nitrogen content[J]. Energies, 2012,5(12):5418-5438. doi: 10.3390/en5125418

    20. [20]

      TIAN F J, YU J L, MCKENZIE L J, HAYASHI J, LI C Z. Conversion of fuel-N into HCN and NH3 during the pyrolysis and gasification in steam:A comparative study of coal and biomass[J]. Energy Fuels, 2007,21(2):517-521. doi: 10.1021/ef060415r

    21. [21]

      AZNAR M, ANSELMO M S, MANYA J J, MURILLO M B. Experimental study examining the evolution of nitrogen compounds during the gasification of dried sewage sludge[J]. Energy Fuels, 2009,23:3236-3245. doi: 10.1021/ef801108s

    22. [22]

      KELEMEN S R, AFEWORKI M, GORBATY M L, KWIATEK P J, SANSONE M, WALTERS C C, COHEN A D. Thermal transformations of nitrogen and sulfur forms in peat related to coalification[J]. Energy Fuels, 2006,20(2):635-652. doi: 10.1021/ef050307p

    23. [23]

      TIAN Y, ZHANG J, ZUO W, CHEN L, CUI Y N, TAN T. Nitrogen conversion in relation to NH3 and HCN during microwave pyrolysis of sewage sludge[J]. Environ Sci Technol, 2013,47(7):3498-3505.  

    24. [24]

      WEI L H, WEN L, YANG T H, ZHANG N. Nitrogen transformation during sewage sludge pyrolysis[J]. Energy Fuels, 2015,29(8):5088-5094. doi: 10.1021/acs.energyfuels.5b00792

    25. [25]

      ZHANG J, TIAN Y, CUI Y N, ZUO W, TAN T. Key intermediates in nitrogen transformation during microwave pyrolysis of sewage sludge:A protein model compound study[J]. Bioresour Technol, 2013,132:57-63. doi: 10.1016/j.biortech.2013.01.008

    26. [26]

      CHEN H F, NAMIOKA T, YOSHIKAWA K. Characteristics of tar, NOx precursors and their absorption performance with different scrubbing solvents during the pyrolysis of sewage sludge[J]. Appl Energy, 2011,88(12):5032-5041. doi: 10.1016/j.apenergy.2011.07.007

    27. [27]

      TIAN K, LIU W J, QIAN T T, JIANG H, YU H Q. Investigation on the evolution of N-containing organic compounds during pyrolysis of sewage sludge[J]. Environ Sci Technol, 2014,48(18):10888-10896. doi: 10.1021/es5022137

    28. [28]

      BEIS S H, ONAY O, KOCKAR O M. Fixed-bed pyrolysis of safflower seed:Influence of pyrolysis parameters on product yields and compositions[J]. Renewable Energy, 2002,26(1):21-32. doi: 10.1016/S0960-1481(01)00109-4

    29. [29]

      TIAN F J, YU J L, MCKENZIE L J, HAYASHI J, LI C Z. Formation of NOx precursors during the pyrolysis of coal and biomass. Part Ⅸ. Effects of coal ash and externally loaded-Na on fuel-N conversion during the reforming of coal and biomass in steam[J]. Fuel, 2006,85(10/11):1411-1417.

    30. [30]

      REN Q Q, ZHAO C S, WU X, LIANG C, CHEN X P, SHEN J Z, TANG G Y, WANG Z. Effect of mineral matter on the formation of NOx precursors during biomass pyrolysis[J]. J Anal Appl Pyrolysis, 2009,85(1/2):447-453.

    31. [31]

      REN Q Q, ZHAO C S, WU X, LIANG C, CHEN X P, SHEN J Z, WANG Z. Catalytic effects of Fe, Al and Si on the formation of NOx precursors and HCl during straw pyrolysis[J]. J Therm Anal Calorim, 2010,99(1):301-306. doi: 10.1007/s10973-009-0150-0

    32. [32]

      ZHOU J Q, GAO P, DONG C Q, YANG Y P. TG-FTIR analysis of nitrogen conversion during straw pyrolysis:A model compound study[J]. J Fuel Chem Technol, 2015,43(12):1427-1432. doi: 10.1016/S1872-5813(16)30001-9

    33. [33]

      YUAN Shuai, LI Jun, CHEN Xue-li, DAI Zheng-hua, ZHOU Zhi-jie, WANG Fu-chen. Study on NH3 and HCN formation mechanisms during rapid pyrolysis of pyrrolic nitrogen[J]. J Fuel Chem Technol, 2011,39(11):801-805.  

  • 加载中
    1. [1]

      Wenqing DengFanfeng DengTing ZhangJunjie LinLiang ZhaoGang LiYi PanJiebin Yang . Continuous measurement of reactive ammonia in hydrogen fuel by online dilution module coupled with Fourier transform infrared spectrometer. Chinese Chemical Letters, 2025, 36(3): 110085-. doi: 10.1016/j.cclet.2024.110085

    2. [2]

      Peiling Li Qing Feng Hongling Yuan Qin Wang . Live Interview Recording about the Penicillin Family. University Chemistry, 2024, 39(9): 122-127. doi: 10.3866/PKU.DXHX202311022

    3. [3]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

    4. [4]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    5. [5]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    6. [6]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    7. [7]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    8. [8]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    9. [9]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    10. [10]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    11. [11]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    14. [14]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    15. [15]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    16. [16]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    17. [17]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    18. [18]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    19. [19]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    20. [20]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

Metrics
  • PDF Downloads(1)
  • Abstract views(1330)
  • HTML views(130)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return