Citation: Huang Zhenxia, Liang Feng, Zhang Haijun, Liu Simin. Preparations and Catalytic Performances for Hydrogen Generation of Co and Ni Containing Bi-or Tri-metallic Nanoparticles[J]. Chemistry, ;2017, 80(7): 621-630. shu

Preparations and Catalytic Performances for Hydrogen Generation of Co and Ni Containing Bi-or Tri-metallic Nanoparticles

  • Corresponding author: Zhang Haijun, zhanghaijun@wust.edu.cn
  • Received Date: 22 December 2016
    Accepted Date: 16 March 2017

Figures(6)

  • Nowadays, liquid hydrogen storage, high pressure gaseous hydrogen storage, organic compounds hydrogen storage, metal hydride hydrogen storage, adsorption hydrogen storage and liquid phase chemical hydrogen storage materials are widely used for storage of hydrogen. Among these methods, the liquid phase chemical hydrogen storage materials attracted considerable attention due to their high hydrogen content, easy control of the hydrogen generation rate and hydrogen purity. The study on synthesis and catalytic activities of various kinds of catalyst for hydrogen production from liquid hydrogen storage materials has become a hot research topic. Owing to their low cost, abundance in earth and good catalytic performance, Co or Ni containing bi-or tri-metallic nanoparticles (NPs) have become the promising catalysts for hydrogen generation. In this review, the preparations and catalytic performances for hydrogen production of Co and Ni containing bi-or tri-metallic NPs are summarized in detail, the disadvantages and potential development directions of Co and Ni based bi-or tri-metallic NPs are also proposed.
  • 加载中
    1. [1]

      S Satyapal, J Petrovic, C Read et al. Catal. Today, 2007, 120(3/4):246~256.

    2. [2]

      M Thomas, A Taner, M E Fowler. Energ. Environ. Sci., 2009, 2(2):480~490.

    3. [3]

      L Schlapbach, A Züttel. Nature, 2001, 414(6861):353~358.

    4. [4]

      S Orimo, Y Nakamori, J R Eliseo et al. Chem. Rev., 2007, 107(10):4111~4132.

    5. [5]

      M Jordá-Beneyto, F Suárez-García, D Lozano-Castelló et al. Carbon, 2007, 45(2):293~303.

    6. [6]

      H W Langmi, G S Mcgrady. Coord. Chem. Rev., 2007, 251(7/8):925~935.

    7. [7]

      L J Murray, M Dincǎ, J R Long. Chem. Soc. Rev., 2009, 38(5):1294~1314.

    8. [8]

      P Chen, Z Xiong, J Luo et al. Nature, 2002, 420(6913):302~304.

    9. [9]

      B Bogdanovic', M Schwickardi. J. Alloy. Compd., 1997, 253~254:1~9.

    10. [10]

      M Chandra, Q Xu. J. Power Sources, 2006, 156(2):190~194.

    11. [11]

      Q Xu, M Chandra. J. Power Sources, 2006, 163(1):364~370.

    12. [12]

      H Zhang, M Okumura, N Toshima. J. Phys. Chem. C, 2011, 115(30):14883~14891.

    13. [13]

      H Zhang, M Haba, M Okumura et al. Langmuir, 2013, 29(33):10330~10339.

    14. [14]

      H Zhang, N Toshima. J. Alloy. Compd., 2013, 394(1):166~176.

    15. [15]

      H Zhang, N Toshima. Catal. Sci. Technol., 2013, 3(2):268~278.

    16. [16]

    17. [17]

      J M Yan, X B Zhang, T Akita et al. J. Am. Chem. Soc., 2010, 132(15):5326~5327.

    18. [18]

      X Wang, Z Huang, L Lu et al. J. Nanosci. Nanotechnol., 2015, 15(4):2770~2776.

    19. [19]

    20. [20]

    21. [21]

    22. [22]

      D Sun, V Mazumder, Ö Metin et al. ACS Nano, 2011, 5(8):6458~6464.

    23. [23]

      Q Xu, M Chandra. J. Alloy. Compd., 2007, 446-447(22):729~732.

    24. [24]

      Q Yao, Z H Lu, Y Wang et al. J. Phys. Chem. C, 2015, 119(25):14167~14174.

    25. [25]

      L Guo, X Gu, K Kang et al. J. Mater. Chem. A, 2015, 3(45):22807~22815.

    26. [26]

      K Kang, X Gu, L Guo et al. Int. J. Hydrogen Energ., 2015, 40(36):12315~12324.

    27. [27]

      N Cao, J Su, W Luo et al. Catal. Commun., 2014, 43(2):47~51.

    28. [28]

      X Li, C Zeng, G Fan. Int. J. Hydrogen Energ., 2015, 40(30):9217~9224.

    29. [29]

      L Ai, X Liu, J Jiang. J. Alloy. Compd., 2015, 625:164~170.

    30. [30]

      A Bulut, M Yurderi, I·E Ertas et al. Appl. Catal. B-Environ., 2016, 180(3):121~129.

    31. [31]

      J Li, Q L Zhu, Q Xu. Catal. Sci. Technol., 2014, 5(1):525~530.

    32. [32]

      D Lu, G Yu, Y Li et al. J. Alloy. Compd., 2017, 694:662~671.

    33. [33]

      M Li, J Hu, Z Chen et al. RSC Adv., 2014, 4(77):41152~41158.

    34. [34]

      D Ke, Y Li, J Wang et al. Int. J. Hydrogen Energ., 2015, 41(4):2564~2574.

    35. [35]

      F Cheng, H Ma, Y Li et al. Cheminform, 2007, 38(17):788~794.

    36. [36]

      W Jiao, X Hu, H Ren et al. J. Mater. Chem. A, 2014, 2(43):18171~18176.

    37. [37]

      J F Petit, P Miele, D Clémençon et al. J. Power Sources, 2014, 260(260):77~81.

    38. [38]

    39. [39]

      P Wang, S Xiang, J Cheng et al. Energy Environment Focus, 2014, 3(3):277~281.

    40. [40]

      X Yang, F Cheng, L Jing et al. Int. J. Hydrogen Energ., 2009, 34(34):8785~8791.

    41. [41]

    42. [42]

      X Wang, S Sun, Z Huang et al. Int. J. Hydrogen Energ., 2014, 39(2):905~916.

    43. [43]

      S K Singh, Q Xu. J. Am. Chem. Soc., 2009, 131(50):18032~18033.

    44. [44]

      S K Singh, Q Xu. Chem. Commun., 2010, 46(35):6545~6547.

    45. [45]

      K Yang, Q Yao, W Huang et al. Int. J. Hydrogen Energ., 2017, 42(10):6840~6850.

    46. [46]

      D Bhattacharjee, K Mandal, S Dasgupta. J. Power Sources, 2015, 287:96~99.

    47. [47]

      S K Singh, Y Iizuka, Q Xu. Int. J. Hydrogen Energ., 2011, 36(18):11794~11801.

    48. [48]

      S K Singh, Q Xu. Inorg. Chem., 2010, 49(13):6148.

    49. [49]

      G Chen, S Desinan, R Nechache et al. Chem. Commun., 2011, 47(22):6308~6310.

    50. [50]

      Y Du, J Su, W Luo et al. ACS Appl. Mater. Interf., 2015, 7(2):1031~1034.

    51. [51]

      N S Çiftci, Ö Metin. Int. J. Hydrogen Energ., 2014, 39(33):18863~18870.

    52. [52]

      N Cao, J Su, W Luo et al. Int. J. Hydrogen Energ., 2014, 39(1):426~435.

    53. [53]

      X Li, C Zeng, G Fan. Int. J. Hydrogen Energ., 2015, 40(10):3883~3891.

    54. [54]

      B Xia, K Chen, W Luo et al. Nano Res., 2015, 8(11):3472~3479.

    55. [55]

      Y Y Jiang, H B Dai, Y J Zhong et al. Chem. Eur. J., 2015, 21(43):15439~15445.

    56. [56]

      Y Jiang, Q Kang, J Zhang et al. J. Power Sources, 2015, 273(273):554~560.

    57. [57]

      B Xia, C Liu, H Wu et al. Int. J. Hydrogen Energ., 2015, 40(46):16391~16397.

    58. [58]

      L Zhang, L Zhou, K Yang et al. J. Alloy. Compd., 2016, 677:87~95.

    59. [59]

      H L Jiang, T Umegaki, T Akita et al. Chem. Eur. J., 2010, 16(10):3132~3137.

    60. [60]

      K Mori, K Miyawaki, H Yamashita. ACS Catal., 2016, 6(5):3128~3135.

    61. [61]

      J Chen, Q Yao, J Zhu et al. Int. J. Hydrogen. Energ., 2016, 41(6):3946~3954.

    62. [62]

      F Qiu, L Li, G Liu et al. Int. J. Hydrogen Energ., 2014, 9(2):436~441.

    63. [63]

      H L Wang, J M Yan, Z L Wang et al. Int. J. Hydrogen Energ., 2012, 37(13):10229~10235.

    64. [64]

      H Zhang, X Wang, C Chen et al. Int. J. Hydrogen Energ., 2015, 40(36):12253~12261.

    65. [65]

      J X Kang, T W Chen, D F Zhang et al. Nano Energy, 2016, 23:145~152.

    66. [66]

      X Wang, Y Zhao, X Peng et al. Int. J. Hydrogen Energ., 2016, 41(1):219~226.

    67. [67]

      K Yang, L Zhou, X Xiong et al. Micropor. Mesopor. Mater., 2016, 225:1~8.

    68. [68]

      L Hu, B Zheng, Z Lai et al. Int. J. Hydrogen Energ., 2014, 39(35):20031~20037.

    69. [69]

      X Xiong, L Zhou, G Yu et al. Int. J. Hydrogen Energ., 2015, 40(45):15521~15528.

    70. [70]

  • 加载中
    1. [1]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    2. [2]

      Ming-Zhen LiYang ZhangKun LiYa-Nan ShangYi-Zhen ZhangYu-Jiao KanZhi-Yang JiaoYu-Yuan HanXiao-Qiang CaoIn situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885

    3. [3]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    4. [4]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    5. [5]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    6. [6]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    7. [7]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    8. [8]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    9. [9]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    11. [11]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    12. [12]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    13. [13]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    14. [14]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    15. [15]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    16. [16]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    18. [18]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    19. [19]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    20. [20]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

Metrics
  • PDF Downloads(21)
  • Abstract views(4034)
  • HTML views(597)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return