Citation: Sun Mengxue, Yu Chanchan, Xu Min, Feng Xueyan, Yao Li. Advances in DNA Mechanical Technology[J]. Chemistry, ;2020, 83(10): 866-874, 918. shu

Advances in DNA Mechanical Technology

  • Corresponding author: Yao Li, yaoli@iccas.ac.cn
  • Received Date: 15 June 2020
    Accepted Date: 14 July 2020

Figures(6)

  • DNA mechanical technology has been widely concerned and deeply studied in recent years. Mechanical DNA devices have been enabled by the unique molecular structure and physical and chemical properties of DNA. More complex mechanical behavior or function can be achieved by designing more elaborate mechanisms. DNA mechanical technology has played important role in studies of the fundamental properties of the biomolecules that sense, transmit, and generate pN forces. Studies of the mechanics of these biomolecules are essential to revealing their functions. Here, we reviewed the latest progress in the study of DNA mechanical technology. First, the mechanical basis of DNA was briefly described. Especially several types of mechanical DNA devices were focused on. Finally, the challenges and prospects of DNA mechanical technology were discussed.
  • 加载中
    1. [1]

      Seeman N C. J. Theor. Biol., 1982, 99: 237-247. 

    2. [2]

      Luo D. Mater. Today, 2003, 6: 38-43.

    3. [3]

      LaBean T H, Li H Y. Nano Today, 2007, 2: 26-35. 

    4. [4]

      Seeman N C. Nature, 2003, 421: 427-431. 

    5. [5]

      Seeman N C, Lukeman P S. Rep. Prog. Phys., 2005, 68: 237-270. 

    6. [6]

      Lin C, Liu Y, Yan H. Biochemistry, 2009, 48: 1663-1674. 

    7. [7]

      Feldkamp U, Niemeyer C M. Angew. Chem. Int. Ed., 2006, 45: 1856-1876. 

    8. [8]

      Blanchard A T, Bazrafshan A S, Yi J, et al. Nano Lett., 2019, 19: 6977-6986. 

    9. [9]

      Neuman K C, Nagy A. Nat. Methods, 2008, 5: 491-505. 

    10. [10]

      Kilchherr F, Wachauf C, Pelz B, et al. Science, 2016, 353: aaf5508.

    11. [11]

      Han D, Pal S, Nangreave J, et al. Science, 2011, 332: 342-346. 

    12. [12]

      Langecker M, Arnaut V, Martin T G, et al. Science, 2012, 338: 932-936. 

    13. [13]

      Douglas S M, Bachelet I, Church G M. Science, 2012, 335: 831-834. 

    14. [14]

      Douglas S M, Chou J J, Shih W M. PNAS, 2007, 104: 6644-6648. 

    15. [15]

      Ding B, Deng Z, Yan H, et al. J. Am. Chem. Soc., 2010, 132: 3248-3258. 

    16. [16]

      Maune H T, Han S, Barish R D, et al. Nat. Nanotechnol., 2010, 5: 61-66. 

    17. [17]

      Derr N D, Goodman B S, Jungmann R, et al. Science, 2012, 338: 662-665. 

    18. [18]

      Tinland B, Pluen A, Sturm J, et al. Macromolecules, 1997, 30: 5763-5765. 

    19. [19]

      Yang D, Campolongo M J, Tran T N N, et al. DNA materials and their applications. Wiley Interdiscip. Rev-Nanomed Nanobiotechnol., 2010, 2: 648-669. 

    20. [20]

      Zhang K, Zhu X, Jia F, et al. J. Am. Chem. Soc., 2013, 135: 14102-14105. 

    21. [21]

      Amodio A, Adedeji A F, Castronovo M, et al. J. Am. Chem. Soc., 2016, 138: 12735-12738. 

    22. [22]

      Zhu B, Zhao Y, Dai J B, et al. ACS Appl. Mater. Interf., 2017, 9: 18434-18439. 

    23. [23]

      Surana S, Shenoy A R, Krishnan Y. Nat. Nanotechnol., 2015, 10: 741-747. 

    24. [24]

      Zhu G, Zheng J, Song E, et al. PNAS, 2013, 110: 7998-8003. 

    25. [25]

      Xie N, Huang J, Yang X, et al. Chem. Commun., 2016, 52: 2346-2349. 

    26. [26]

      Niemeyer C M, Ceyhan B, Hazarika P. Angew. Chem. Int. Ed., 2003, 42: 5766-5770. 

    27. [27]

      Nickels P C, Wunsch B, Holzmeister P, et al. Science, 2016, 354: 305-307. 

    28. [28]

      Holliday R. Genet. Res., 1964, 5: 282-290. 

    29. [29]

      Meselson M S, Radding C M. PNAS, 1975, 72: 358-361. 

    30. [30]

      Lin C X, Liu Y, Rinker S, et al. Chem. Phys. Chem., 2006, 7: 1641-1647. 

    31. [31]

      Winfree E, Liu F R, Wenzler L A, et al. Nature, 1998, 394: 539-544. 

    32. [32]

      Fu T J, Seeman N C. Biochemistry, 1993, 32: 3211-3220. 

    33. [33]

      Li X J, Yang X P, Qi J, et al. J. Am. Chem. Soc., 1996, 118: 6131-6140. 

    34. [34]

      Liu F R, Sha R J, Seeman N C. J. Am. Chem. Soc., 1999, 121: 917-922. 

    35. [35]

      Reishus D, Shaw B, Brun Y, et al. J. Am. Chem. Soc., 2005, 127: 17590-17591. 

    36. [36]

      LaBean T H, Yan H, Kopatsch J, et al. J. Am. Chem. Soc., 2000, 122: 1848-1860. 

    37. [37]

      Liu Y, Lin C X, Li H Y, et al. Angew. Chem. Int. Ed., 2005, 44: 4333-4338. 

    38. [38]

      Liu D, Park S H, Reif J H, et al. PNAS, 2004, 101: 717-722. 

    39. [39]

      Yan H, Zhang X P, Shen Z Y, et al. Nature, 2002, 415: 62-65. 

    40. [40]

      Shen Z Y, Yan H, Wang T, et al. J. Am. Chem. Soc., 2004, 126: 1666-1674. 

    41. [41]

      Liu W Y, Wang X, Wang T, et al. Nano Lett., 2008, 8: 317-322. 

    42. [42]

      Rothemund P W. Nature, 2006, 440: 297-302. 

    43. [43]

      ChaoY C, Hong Y J, Lee C Y, et al. Nanoscale, 2020, 12: 2992-2998. 

    44. [44]

      Shin J S, Pierce N A. J. Am. Chem. Soc., 2004, 126: 10834-10835. 

    45. [45]

      Gu H, Chao J, Xiao S J, et al. Nature, 2010, 465: 202-205. 

    46. [46]

      Lund K, Manzo A J, Dabby N, et al. Nature, 2010, 465: 206-210. 

    47. [47]

      Wickham S F, Bath J, Katsuda Y, et al. Nat. Nanotechnol., 2012, 7: 169-173. 

    48. [48]

      Yang Y, Goetzfried M A, Hidaka K, et al. Nano Lett., 2015, 15: 6672-6676. 

    49. [49]

      Liber M, Tomov T E, Tsukanov R, et al. Small, 2015, 11: 568-575. 

    50. [50]

      Thubagere A J, Li W, Johnson R F, et al. Science, 2017, 357: eaan6558.

    51. [51]

      Li S P, Jiang Q, Liu S L, et al. Nat. Biotechnol., 2018, 36: 258-261. 

    52. [52]

      Evans E A, Calderwood D A. Science, 2007, 316: 1148-1153. 

    53. [53]

      Levental K R, Yu H, Kass L, et al. Cell, 2009, 139: 891-906. 

    54. [54]

      Kim S T, Takeuchi K, Sun Z Y, et al. J. Biol. Chem., 2009, 284: 31028-31037. 

    55. [55]

      Qiu Y, Brown A C, Myers D R, et al. PNAS, 2014, 111: 14430-14435. 

    56. [56]

      Kanchanawong P, G Shtengel, Pasapera A M, et al. Nature, 2010, 468: 580-U262. 

    57. [57]

      Schwarz U S, Soine J R D. Biochim. Biophys. Acta-Mol. Cell Res., 2015, 1853: 3095-3104. 

    58. [58]

      Blakely B L, Dumelin C E, Trappmann B, et al. Nat. Methods, 2014, 11: 1229-1241. 

    59. [59]

      KongF, García A J, Mould A P, et al. J. Cell Biol., 2009, 185: 1275-1284. 

    60. [60]

      Liu Y, Blanchfield L, Ma V P, et al. PNAS, 2016, 113: 5610-5615. 

    61. [61]

      Dutta P K, Zhang Y, Blanchard A T, et al. Nano Lett., 2018, 18: 4803-4811. 

    62. [62]

      Ma R, Kellner A V, Ma V P Y, et al. PNAS, 2019, 116: 16949-16954. 

    63. [63]

      Yao L, Li Y, W T Tsai, et al. Angew. Chem. Int. Ed., 2013, 52: 14041-14044. 

    64. [64]

      Lu P, Zhang D, Chai Y H, et al. Anal. Chim. Acta, 2019, 1045: 1-9. 

    65. [65]

      Brockman J M, Blanchard A T, Ma V P, et al. Nat. Methods, 2018, 15: 115-117. 

    66. [66]

      Zhao Y C, Sarkar A, Wang X F. Biosens. Bioelectron., 2020, 150: 111959. 

    67. [67]

      Yurke B, Turberfield A J, Mills A P, et al. Nature, 2000, 406: 605-608. 

    68. [68]

      Powell J T, Akhuetie-Oni B O, Zhang Z, et al. Angew. Chem. Int. Ed., 2016, 55: 11412-11416. 

    69. [69]

      Kuzuya A, Sakai Y, Yamazaki T, et al. Nat. Commun., 2011, 2: 449. 

    70. [70]

      Marras A E, Zhou L, Su H J, et al. PNAS, 2015, 112: 713-718. 

    71. [71]

      Ketterer P, Willner E M, Dietz H, et al. Sci. Adv., 2016, 2: e1501209.

    72. [72]

      Ke Y, Meyer T, Shih W M, et al. Nat. Commun., 2016, 7: 10935. 

    73. [73]

      Gerling T, Kube M, Kick B et al. Sci. Adv., 2018, 4: eaau1157.

  • 加载中
    1. [1]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

    2. [2]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047

    3. [3]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    4. [4]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    5. [5]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    6. [6]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    7. [7]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    8. [8]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    9. [9]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    10. [10]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    11. [11]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    12. [12]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    13. [13]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    14. [14]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    15. [15]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    16. [16]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    17. [17]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    18. [18]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    19. [19]

      Zehua ZhangHaitao YuYanyu Qi . Design Strategy for Thermally Activated Delayed Fluorescence Materials with Multiple Resonance Effect. Acta Physico-Chimica Sinica, 2025, 41(1): 100006-0. doi: 10.3866/PKU.WHXB202309042

    20. [20]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

Metrics
  • PDF Downloads(16)
  • Abstract views(1742)
  • HTML views(502)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return