Citation: HONG Xin, LI Yun-he, ZHAO Yong-hua, TANG Ke. Preparation of mesoporous Co-MCM-41 and its performance in adsorption removal of various basic nitrogen compounds[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(2): 243-250. shu

Preparation of mesoporous Co-MCM-41 and its performance in adsorption removal of various basic nitrogen compounds

  • Corresponding author: TANG Ke, tangke0001@163.com
  • Received Date: 9 August 2017
    Revised Date: 23 November 2017

    Fund Project: the Liaoning Provincial Natural Science Foundation of China 2014020113Guangxi Colleges and Universities Key Laboratory of Beibu Gulf Oil and Natural Gas Resource Effective Utilization 2016KLOG04The project was supported by the Liaoning Provincial Natural Science Foundation of China(2014020113)and Guangxi Colleges and Universities Key Laboratory of Beibu Gulf Oil and Natural Gas Resource Effective Utilization(2016KLOG04)

Figures(8)

  • The mesoporous materials MCM-41 and Co-MCM-41, with Co/Si(molar ratio)=0.18, were prepared by hydrothermal synthesis method with cobalt nitrate as cobalt source and characterized by X-ray diffraction (XRD), fourier transform infrared spectrometry (FT-IR) and nitrogen adsorption-desorption.XRD and FT-IR results indicated that Co was introduced into the framework of mesoporous materials.The MCM-41 and Co-MCM-41 with highly ordered hexagonal mesoporous structure had been synthesized when the Co/Si(molar ratio) was 0.18 or less.But the sample had lost its ordered hexagonal mesoporous structure when Co/Si(molar ratio) was 0.22, indicating that the maximum addition amount of Co was about Co/Si(molar ratio)=0.18 when Co-MCM-41 was synthesized by using cobalt nitrate as cobalt source.Compared with the MCM-41, the intensity of XRD peak (100) of Co-MCM-41 became weak, broad and its surface area and total pore volume decreased, but the average pore diameter increased with the increase of Co amount.However, there was small amount of highly dispersed Co3O4 on the channel surface of Co-MCM-41 samples when the Co/Si(molar ratio) was 0.06 or more.Denitrification of model fuels containing about 1737.35 μg(nitrogen)/g of quinoline, aniline or pyridine was studied over the synthesized Co-MCM-41 with static adsorption at ambient conditions.The sequence of adsorption denitrification performance over all Co-MCM-41 samples was aniline, pyridine and quinoline.The adsorption capacity of Co-MCM-41(0.06) for aniline, pyridine and quinoline was 42.17, 35.66 and 29.18 mg(N)/g and the removal rate of basic nitrogen was 82.38%, 73.53% and 61.11% respectively.The coexisting aromatic compounds in model fuel had little impact on the removal performance of basic nitrogen over Co-MCM-41(0.06), implying that the N-M bond between the adsorption sites and N atom in the compound plays a significant role.Furthermore, Co-MCM-41 could be easily regenerated its adsorption denitrification performance by using calcination or ethanol regeneration method.
  • 加载中
    1. [1]

      ZHU Li-ning. The number of national vehicle has exceed 300 million[N]. China Police Daily Traffic Safety Weekly, 2017-4-18(001).

    2. [2]

      SU Ning, YANG Yi-fan. Oil products' consumption in China will mean slower growth remain slow[J]. China Pet Enterprise, 2017(3):70-72.  

    3. [3]

      FAN Wu-bo, CHEN Jun-hui, WANG Ting, LIU Si-yu, QIAN Jun, YE Hong. Study on negative effects of vehicle emissions and countermeasures[J]. Sichuan Environ, 2015,34(6):65-69.  

    4. [4]

      PANG Hai-quan, LI Yan-fang, HAN Dong-yun, JIN Yang, QIAO Hai-yan, CAO Zu-bin. Research on removing nitrogen compounds from model diesel oil by alkylation method[J]. Spec Petrochem, 2017,34(2):67-70.  

    5. [5]

      TAO X, ZHOU Y, WEI Q, DING S, ZHOU W. Inhibition effects of nitrogen compounds on deep hydrodesulfurization of straight-run gas oil over a NiW/Al2O3 catalyst[J]. Fuel, 2017,188:401-409. doi: 10.1016/j.fuel.2016.09.055

    6. [6]

      HAN X, LIN H F, ZHENG Y. Adsorptive denitrogenation and desulfurization of diesel using activated carbons oxidized by (NH4)S2O8 under mild conditions[J]. Can J Chem Eng, 2015,93(3):538-548. doi: 10.1002/cjce.v93.3

    7. [7]

      IMTEAZ A, SUNG H J. Remarkable improvement in adsorptive denitrogenation of model fossil fuels with CuCl/activated carbon, prepared under ambient condition[J]. Chem Eng J, 2015,279:327-334. doi: 10.1016/j.cej.2015.05.035

    8. [8]

      BAE Y S, KIN M B, LEE H J, LEE C H, RYU J W. Adsorptive denitrogenation of light gas oil by silica-zirconia cogel[J]. AIChE J, 2010,52(2):510-521.  

    9. [9]

      MUSHRUSH G W, QUINTANA M A, BAUSERMAN J W, WILLAUER H D. Post refining removal of organic nitrogen compounds from diesel fuels to improve environmental quality[J]. J Environ Sci Health A, 2011,46(2):176-180. doi: 10.1080/10934529.2011.532433

    10. [10]

      SEO P W, AHMED I, JHUNG S H. Adsorptive removal of nitrogen containing compounds from a model fuel using a metal organic framework having a free carboxylic acid group[J]. Chem Eng J, 2016,299:236-243. doi: 10.1016/j.cej.2016.04.060

    11. [11]

      WANG Zhao-yang, LI Gang, SUN Zhi-guo. Denitrogenation through adsorption to sulfonated metal-organic frameworks[J]. Acta Phys.-Chim Sin, 2013,29(11):2422-2428. doi: 10.3866/PKU.WHXB201309021

    12. [12]

      HONG Xin, TANG Ke. Modification and adsorptive denitrification of NaY molecular sieve[J]. J Fuel Chem Technol, 2015,43(2):1-7.  

    13. [13]

      HERNÁNDEZ M A J, YANG R T. Denitrogenation of transportation fuels by zeolites at ambient temperature and pressure[J]. Angew Chem Int Ed, 2004,43(8):1004-1006. doi: 10.1002/(ISSN)1521-3773

    14. [14]

      ZHU Jin-zhu, SHEN Jian. Adsorption of Basic Nitrogen Compounds from Oil by SBA-15 Zeolite[J]. Acta Pet Sin (Pet Process Sect), 2012,40(11):566-570.  

    15. [15]

      SYED A S, LIN H F, ZHENG Y. Adsorptive denitrogenation and desulfurization of diesel fractions by mesoporous SBA15-supported nickel(Ⅱ) phosphide synthesized through a novel approach of urea matrix combustion[J]. Ind Eng Chem Res, 2012,51(44):14503-14510. doi: 10.1021/ie3015044

    16. [16]

      ZHANG H, SONG H Y. Study of adsorptive denitrogenation of diesel fuel over mesoporous molecular sieves based on breakthrough curves[J]. Ind Eng Chem Res, 2012,51(50):16059-16065.  

    17. [17]

      TANG K, HONG X. Preparation and characterization of Co-MCM-41 and its adsorption removing basic nitrogen compounds from FCC diesel oil[J]. Energy Fuels, 2016,30(6):4619-4624. doi: 10.1021/acs.energyfuels.6b00427

    18. [18]

      HONG Xin, TANG Ke. Preparation and adsorption denitrification of heteroatoms mesoporous molecular sieve Co-MCM-41[J]. J Fuel Chem Technol, 2015,43(6):720-727.  

    19. [19]

      HONG Xin, TANG Ke, DING Shi-hong. Preparation and deep adsorption denitrification from diesel oil of heteroatoms mesoporous molecular sieve Co-MCM-41[J]. J Fuel Chem Technol, 2016,44(1):99-105.  

    20. [20]

      KARTHIK M, TRIPATHI A K, GUPTA N M, VINU A, HARTMANN M, PALANICHAMY M, MURUGESAN V. Characteriaztion of Co, Al-MCM-41 and its activity in the t-butylation of phenol using isobutanol[J]. Appl Catal A:Gen, 2004,268(1):139-149.  

    21. [21]

      SUN Qing-lin, YANG Yuan, ZHANG Ying-jie, LI Sha, SUN Peng, KONG Yan. Synthesis, catalytic activity and chemical analysis method for Co-MCM-41 with high cobalt content[J]. Chin J Inorg Chem, 2011,27(12):2346-2352.  

    22. [22]

      PARVULESCU V, SU B L I. Cobalt or nickel substituted MCM-41 molecular sieves for oxidation of hydrocarbons[J]. Catal Today, 2001,69(1/4):315-322.  

    23. [23]

      LI Y N, GUO X H, ZHOU G D, HE X, BI Y L, LI W X, CHENG T X, WU T H, ZHEN K J. Estimation of consecutive and parallel reactions during ethane dehydrogenation with carbon dioxide over Co-MCM-41[J]. Pol J Chem, 2005,79(8):1357-1364.  

    24. [24]

      ANDRÉS A G B, MA G A, MA E R J, MARCELO N, M I O, KARIM S. Effect of the synthesis method on Co-catalysits based on MCM-41 for the fischer-tropsch reaction[J]. Top Catal, 2011,54(1/4):190-200.  

    25. [25]

      LI Ya-nan, GUO Xiao-hong, ZHOU Guang-dong, BI Ying-li, LI Wen-xing, CHENG Tie-xin, WU Tong-hao, ZHEN Kai-ji. CO2-dehydrogenation of ethane over Co-MCM-41 catalyst[J]. Chem J Chin Univ, 2005,26(6):1122-1125.  

    26. [26]

      ÁGNES S, MARGARITA P, CHRISTO M. Catalytic activity of Co/MCM-41 and Co/SBA-15 materials in toluene oxidation[J]. J Mater Sci, 2009,44(24):6710-6716. doi: 10.1007/s10853-009-3600-y

    27. [27]

      TANG Qing-hu, ZHAO Pei-zhen, ZHANG Qing-hong, WANG Ye. Characterization and catalytic performance of Co-MCM-41 for styrene epoxidation[J]. Chin J Catal, 2005,26(11):1031-1036. doi: 10.3321/j.issn:0253-9837.2005.11.021

    28. [28]

      JIANG T S, SHEN W, ZHAO Q, LI M, CHU J Y, YIN H B. Characterization of CoMCM-41 mesoporous molecular sieves obtained by the microwave irradiation method[J]. J Solid State Chem, 2008,181(9):2298-2305. doi: 10.1016/j.jssc.2008.05.010

    29. [29]

      ZHANG Yan, LI Xiang-qi, CHEN Qiong-xia, TANG De-ping. Microwave synthesis of ordered mesoporous Co-MCM-41[J]. Chem Ind Time, 2008,22(2):12-15.  

    30. [30]

      SHRIKANT S B, SINGH A P. Characterization and catalytic activity of cobalt containing MCM-41 prepared by direct hydrothermal, grafting and immobilization methods[J]. J Mol Catal A:Chem, 2007,266(1):118-130.  

    31. [31]

      GALACHO C, CARROTT M M L R, CARROTT P J M. Structural and catalytic properties of Ti-MCM-41 synthesised at room temperature up to high Ti content[J]. Microporous Mesoporous Mater, 2007,100(1/3):312-321.  

    32. [32]

      CHEN Y W, LIN H Y. Characteristics of Ti-MCM-41 and its catalytic properties in oxidation of benzene[J]. J Porous Mat, 2002,9(3):175-184. doi: 10.1023/A:1020982700613

    33. [33]

      CHEN Y W, LU Y H. Characteristics of V-MCM-41 and its catalytic properties in oxidation of benzene[J]. Ind Eng Chem Res, 1999,38(5):1893-1903. doi: 10.1021/ie980665y

    34. [34]

      LEE D S, LIU T K. Characterization of V-MCM-41 mesoporous materials[J]. J Sol-Gel Sci Technol, 2002,24(1):69-80. doi: 10.1023/A:1015165600804

    35. [35]

      ZHAO Qian, HU Xiao-xiao, ZHANG Rong-xian, LI Mei, JIANG Ting-shun. Stability and hydrothermal synthesis of Co-MCM-41 mesoporous molecular sieves[J]. Chin J Nonferrous Met, 2009,19(1):189-194.  

    36. [36]

      ZHENG J, CHU W, ZHANG H, JIANG C F, DAI X Y. CO oxidation over Co3O4/SiO2 catalysts:Effects of porous structure of silica and catalyst calcination temperature[J]. J Nat Gas Chem, 2010,19(6):583-588. doi: 10.1016/S1003-9953(09)60119-5

    37. [37]

      VARGHESE S, CUTRUFELLO M G, ROMBI E, CANNAS C, MONACI R, FERINO I. CO oxidation and preferential oxidation of CO in the presence of hydrogen over SBA-15-templated CuO-Co3O4 catalysts[J]. Appl Catal A:Gen, 2012,443/444(41):161-170.  

    38. [38]

      LI Ya-nan. Synthesis, characterization and catalytic activity of Me-MCM-41 for oxidative dehydrogenation of ethane to ethylene with CO2[D]. Changchun: Jilin University, 2006.

  • 加载中
    1. [1]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    2. [2]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    3. [3]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    4. [4]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    5. [5]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    6. [6]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

    7. [7]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    8. [8]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    9. [9]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    10. [10]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    11. [11]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    12. [12]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    13. [13]

      Kexin Feng Jie Zhang Yujia Sun Qiong Ai Longchun Li . 乙酰二茂铁和二茂铁甲酰丙酮的合成、纯化及表征. University Chemistry, 2025, 40(8): 307-314. doi: 10.12461/PKU.DXHX202409045

    14. [14]

      Liping GUO . Synthesis and crystal structure characterization of yttrium imido complex: The reactivity of 2-substituted-1-amino-o-carborane with yttrium dialkyl complex. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1409-1415. doi: 10.11862/CJIC.20250065

    15. [15]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    16. [16]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    17. [17]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    18. [18]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    19. [19]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    20. [20]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

Metrics
  • PDF Downloads(6)
  • Abstract views(3002)
  • HTML views(253)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return