Citation: LUO Wei, XUE Ji-long, MENG Yue, QIAN Meng-dan, FANG Lei, XIA Sheng-jie, NI Zhe-ming. Adsorption and selective hydrogenation mechanism of cinnamaldehyde on Pt(111) surface and Pt14 cluster[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(7): 818-825. shu

Adsorption and selective hydrogenation mechanism of cinnamaldehyde on Pt(111) surface and Pt14 cluster

  • Corresponding author: XIA Sheng-jie, jchx@zjut.edu.cn NI Zhe-ming, xiasj@zjut.edu.cn
  • Received Date: 12 March 2018
    Revised Date: 24 May 2018

    Fund Project: the National Natural Science Foundation of China 21503188the Zhejiang Provincial Natural Science Foundation of China LQ15B030002The project was supported by the National Natural Science Foundation of China (21503188) and the Zhejiang Provincial Natural Science Foundation of China (LQ15B030002)

Figures(6)

  • The adsorption and the mechanism for selective hydrogenation of cinnamaldehyde (CAL) on Pt (111) surface and Pt14 cluster were investigated by using density functional theory (DFT). The results illustrate that the synergistic adsorption of CAL molecule on Pt (111) surface with C=O and C=C bonds is most stable at the Hcp position, whereas most stable adsorption of CAL appears on the Pt14 cluster with C=C bond; the adsorption of CAL on the Pt14 cluster is stronger than that on Pt(111) surface. The reaction barriers for each elementary reaction were determined from the transition state search and the results suggest that CAL was preferentially hydrogenated at C=O on the Pt(111) surface and Pt14 cluster, forming cinnamyl alcohol (COL); the hydrogenation of O atom takes the priority. Both Pt plate and cluster have good selectivity for hydrogenation of CAL to COL. The reaction barrier of CAL hydrogenation on Pt(111) surface is lower than that on Pt14 cluster, indicating that the catalytic activity and selectivity of CAL hydrogenation are closely related to the structure of Pt catalysts; Pt(111) surface is more favorable for catalyzing the hydrogenation of CAL to COL.
  • 加载中
    1. [1]

      GAO Shuang, CHEN Xiao-lu, WANG Jian-jiang, DU Guo-feng, LI Zhen, WANG Zhen-lü. Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol on Ru-based catalysts[J]. Petrochem Technol, 2017,46(7):862-868.  

    2. [2]

      CLAUS P, BRULCKNER A, MOHR C, HOFMEISTER H. Supported gold nanoparticles from quantum dot to mesoscopic size scale:Effect of electronic and structural properties on catalytic hydrogenation of conjugated functional groups[J]. J Am Chem Soc, 2000,122(46):11430-11439. doi: 10.1021/ja0012974

    3. [3]

      BUS E, PRINS R, BOKHOVEN J A V. Origin of the cluster-size effect in the hydrogenation of cinnamaldehyde over supported Au catalysts[J]. Catal Commun, 2007,8(9):1397-1402. doi: 10.1016/j.catcom.2006.11.040

    4. [4]

      HISCHL R, DELBECQ F, SAUTET P, HAFNER J. Adsorption of unsaturated aldehydes on the (111) surface of a Pt-Fe alloy catalyst from first principles[J]. J Catal, 2003,217(2):354-366. doi: 10.1016/S0021-9517(03)00057-5

    5. [5]

      LI Hui, MA Chun-jing, LI He-xing. Study on cinnamaldehyde hydrogenation to 3-phenylpropyl aldehyde at atmospheric pressure over Ni-Co-B amorphous alloys[J]. Acta Chim Sin, 2006,64(19):1947-1953. doi: 10.3321/j.issn:0567-7351.2006.19.002

    6. [6]

      Ni X J, ZHANG B S, LI C, PANG M, SU D S, WILLIAMS C T, LIANG C H. Microwave-assisted green synthesis of uniform Ru nanoparticles supported on non-functional carbon nanotubes for cinnamaldehyde hydrogenation[J]. Catal Commun, 2012,24(24):65-69.  

    7. [7]

      MARCHI A J, GORDO D A, TRASARTI A F, APESTEGUIA C R. Liquid phase hydrogenation of cinnamaldehyde on Cu-based catalysts[J]. Appl Catal A:Gen, 2003,249(1):53-67. doi: 10.1016/S0926-860X(03)00199-6

    8. [8]

      JOSEPH ANTONY RAJ A, PRAKASH M G, ELANGOVAN T, VISWANATHAN B. Selective hydrogenation of cinnamaldehyde over cobalt supported on alumina, silica and titania[J]. Catal Lett, 2012,142(1):87-94. doi: 10.1007/s10562-011-0693-0

    9. [9]

      LUO Q Q, WANG T, BELLER R, JIAO H J. Acrolein hydrogenation on Ni(111)[J]. J Phys Chem C, 2013,117(24):12715-12724. doi: 10.1021/jp403972b

    10. [10]

      QIAN Meng-dan, XUE Ji-long, XIA Sheng-jie, NI Zhe-ming, JIANG Jun-hui, CAO Yong-yong. Decarbonylation and hydrogenation reaction of furfural on Pd/Cu(111) surface[J]. J Fuel Chem Technol, 2017,45(1):34-42.  

    11. [11]

      YUAN E, WANG L, ZHANG X W, FENG R, WU C, LI G Z. Density functional theory analysis of anthraquinone derivative hydrogenation over palladium catalyst[J]. Chem Phys Chem, 2016,17(23):3974-3984. doi: 10.1002/cphc.201600874

    12. [12]

      ROJAS H, DIAZ G, MARTINE J J, CASTANEDA C, GOMEZ-CORTES A, ARENAS-ALATORRE J. Hydrogenation of α, β-unsaturated carbonyl compounds over Au and Ir supported on SiO2[J]. J Mol Catal A:Chem, 2012,363(364):122-128.  

    13. [13]

      IDE M S, HAO B, NEUROCK M, DAVIS R J. Mechanistic insights on the hydrogenation of α, β-unsaturated ketones and aldehydes to unsaturated alcohols over metal catalysts[J]. ACS Catal, 2012,2(4):671-683. doi: 10.1021/cs200567z

    14. [14]

      ZANELLA R, LOUIS C, GIORGIO S, TOUROUDE R. Crotonaldehyde hydrogenation by gold supported on TiO2:Structure sensitivity and mechanism[J]. J Catal, 2004,223(2):328-339. doi: 10.1016/j.jcat.2004.01.033

    15. [15]

      LOFFREDA D, DELLECQ F, VIGNE F, SAUTET P. Catalytic hydrogenation of unsaturated aldehydes on Pt(111):Understanding the selectivity from first-principles calculations[J]. Angew Chem Int Ed, 2005,44(33):5279-5282. doi: 10.1002/(ISSN)1521-3773

    16. [16]

      HAN Q, LIU Y F, WANG D, YUAN F L, NIU X Y, ZHU Y J. Effect of carbon nanosheets with different graphitization degree as support of noble metal on selective hydrogenation of cinnamaldehyde[J]. Rsc Adv, 2016,6(100):98356-98364. doi: 10.1039/C6RA17979G

    17. [17]

      ABID M, PAUL-BONCOR V, TOUROUDE R. Pt/CeO2 catalysts in crotonaldehyde hydrogenation:Selectivity, metal particle size and SMSI states[J]. Appl Catal A:Gen, 2006,297(1):48-59. doi: 10.1016/j.apcata.2005.08.048

    18. [18]

      MAHATA N, GONCALVE F, PEREIRA M F R, FIGUEIREDO J L. Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over mesoporous carbon supported Fe and Zn promoted Pt catalyst[J]. Appl Catal A:Gen, 2008,339(2):159-168. doi: 10.1016/j.apcata.2008.01.023

    19. [19]

      TEDDY J, FALQUI A, CORRIAS A, CARTA D, LECANTE P, GERBER I, SERP P. Influence of particles alloying on the performances of Pt-Ru/CNT catalysts for selective hydrogenation[J]. J Catal, 2011,278(1):59-70. doi: 10.1016/j.jcat.2010.11.016

    20. [20]

      JOB N, PIRARD R, MARIEN J, PIRARD J P. Porous carbon xerogels with texture tailored by pH control during sol-gel process[J]. Carbon, 2004,42(3):619-628. doi: 10.1016/j.carbon.2003.12.072

    21. [21]

      DURNDELL L J, PARLETT C M, HONDOW N S, ISAACS M A, WILSON K, LEE A F. Selectivity control in Pt-catalyzed cinnamaldehyde hydrogenation[J]. Sci Rep, 2015,59425. doi: 10.1038/srep09425

    22. [22]

      TUOKKO S, PIHKO P M, HONKALA K. First principles calculations for hydrogenation of acrolein on Pd and Pt:Chemoselectivity depends on steric effects on the surface[J]. Angew Chem Int Ed, 2016,55(5):1670-1674. doi: 10.1002/anie.201507631

    23. [23]

      CAO X M, BURCH R, HARDCRE C, HU P. Reaction mechanisms of crotonaldehyde hydrogenation on Pt(111):Density functional theory and microkinetic modeling[J]. J Phys Chem C, 2011,115(40):19819-19827. doi: 10.1021/jp206520w

    24. [24]

      YANG X, WANG A, WANG X, ZHANG T, HAN K, LI J. Combined experimental and theoretical investigation on the selectivities of Ag, Au, and Pt catalysts for hydrogenation of crotonaldehyde[J]. J Phys Chem C, 2009,113(49):97-102.  

    25. [25]

      LI L C, WANG W, WANG X L, ZHSNG L. Investigating the mechanism of the selective hydrogenation reaction of cinnamaldehyde catalyzed by Ptn clusters[J]. J Mol Model, 2016,22(8):1-11.  

    26. [26]

      JIANG Z, QIN P, FANG T. Theoretical study of NH3 decomposition on Pd-Cu(111) and Cu-Pd (111) surfaces:A comparison with clean Pd(111) and Cu(111)[J]. Appl Surf Sci, 2016,371:337-342. doi: 10.1016/j.apsusc.2016.02.231

    27. [27]

      GOVIND N, PETERSEN M, FITZGERAID G, KING-SMITH D, ANDZELM J. A generalized synchronous transit method for transition state location[J]. Comput Mater Sci, 2003,28(2):250-258.  

    28. [28]

      XIAO Xue-chun, SHI Wi, NI Zhe-ming. Selective hydrogenation mechanism of cinnamaldehyde on Au(111) surface[J]. Acta Phys-Chim Sin, 2014,30(8):1456-1464. doi: 10.3866/PKU.WHXB201406091

    29. [29]

      JIANG Jun-hui, QIAN Meng-dan, XUE Ji-long, XIA Sheng-jie, NI Zhe-ming, SHAO Meng-meng. Comparison of properties of In-Au(111) and Ir-Au(111) alloy surfaces, and their adsorption to crotonaldehyde[J]. Acta Phys-Chim Sin, 2016,32(12):2932-2940. doi: 10.3866/PKU.WHXB201609302

    30. [30]

      YANG X F, WANG A Q, WANG X D, ZHANG T, HAN K L, LI J. Combined experimental and theoretical investigation on the selectivities of Ag, Au, and Pt catalysts for hydrogenation of crotonaldehyde[J]. J Phys Chem C, 2009,113(49):20918-20926. doi: 10.1021/jp905687g

    31. [31]

      PIRILLO S, LOPEZ-CORRAL I, GERMAN E, JUAN A. Density functional study of acrolein adsorption on Pt (111)[J]. Vacuum, 2014,99(1):259-264.  

    32. [32]

      LIU R Q. Adsorption and dissociation of H2O on Au(111) surface:A DFT study[J]. Comput Theor Chem, 2013,1019(1):141-145.  

    33. [33]

      WEI S P, ZHAO Y T, FAN G L, YANG L, LI F. Structure-dependent selective hydrogenation of cinnamaldehyde over high-surface-area CeO2-ZrO2 composites supported Pt nanoparticles[J]. Chem Eng J, 2017,322(15):234-245.  

    34. [34]

      LIU H, MEI Q, LI S, YANG Y, WANG Y, LIU H, ZHENG L, AN P, ZHANG J, HAN B. Selective hydrogenation of unsaturated aldehydes over Pt nanoparticles promoted by the cooperation of steric and electronic effects[J]. Chem Commun, 2018,54(8):908-911. doi: 10.1039/C7CC08942B

    35. [35]

      YANG B, CHERKASOV N, HUBAND S, WALKER D, WALTON R I, REBROV E. Highly selective continuous flow hydrogenation of cinnamaldehyde to cinnamyl alcohol in a Pt/SiO2 coated tube reactor[J]. Catalysts, 2018,8(2)58. doi: 10.3390/catal8020058

  • 加载中
    1. [1]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    2. [2]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    5. [5]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    6. [6]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    7. [7]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    8. [8]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    9. [9]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    10. [10]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    11. [11]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    12. [12]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    13. [13]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    14. [14]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    15. [15]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    16. [16]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    17. [17]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    20. [20]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

Metrics
  • PDF Downloads(14)
  • Abstract views(1293)
  • HTML views(212)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return