Citation: ZHANG Qing-ling, GUO He-qin, HOU Bo, WANG Jun-gang, LI De-bao, JIA Li-tao. Effects of Mn and Zr promoters on the performance of ordered mesoporous carbon supported Co catalyst in Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(6): 682-688. shu

Effects of Mn and Zr promoters on the performance of ordered mesoporous carbon supported Co catalyst in Fischer-Tropsch synthesis

  • Corresponding author: JIA Li-tao, jialitao910@163.com
  • Received Date: 3 March 2017
    Revised Date: 20 April 2017

    Fund Project: the ShanXi Provincial Research Foundation for Basic Research 2014021014-6the "Strategic Priority Research Program"Demonstration of Key Technologies for Clean and Efficient Utilization of Low-rank Coal XDA07070700the Coal Base Key Technologies R & D Program of ShanXi Province MH2014-13the National Natural Science Foundation of China 21503252the National Natural Science Foundation of China 21273265the ShanXi Provincial Research Foundation for Basic Research 201601D021044

Figures(5)

  • Cobalt-based catalysts supported on ordered mesoporous carbon (Co/OMC) were modified with Mn and Zr promoters by the co-impregnation method. The cobalt-based catalysts were characterized by XRD, N2 sorption, H2-TPR, H2/CO-TPD and XPS; the promoting effects of Mn and Zr on the catalytic performance of Co/OMC in Fischer-Tropsch synthesis (FTS) were investigated in a fixed-bed reactor. The results indicate that the addition of either Mn or Zr can greatly reduce the selectivity to CH4 for FTS over Co/OMC. Moreover, Mn as a promoter can enhance the selectivity to C2-4 hydrocarbons and the olefin/paraffin ratio, whereas Zr promotes the dispersion of cobalt species and increases the number of active Co sites, leading to a significant increase in the FTS activity and selectivity to C5+ hydrocarbons.
  • 加载中
    1. [1]

      XING C, YANG G, WANG D, ZENG C, JIN Y, YANG R, YOSHIFUMI S, NORITATSU T. Controllable encapsulation of cobalt clusters inside carbon nanotubes as effective catalysts for Fischer-Tropsch synthesis[J]. Catal Today, 2013,215(1):24-28.  

    2. [2]

      QIN Shao-dong, ZHANG Cheng-hua, XU Jian, WU Bao-shan, LI Yong-wang. Mo and Cu modified FeK/SiO2 catalysts for Fischer-Tropsch Synthesis[J]. Chin J Catal, 2010, 31(9):1132-1138.

    3. [3]

      SHI Yu-lin, LIN Quan, LI Jia-bo. Promoter and their effects on cobalt Fischer-Tropsch catalysts[J]. Acta Pet Sin(Pet Process Sect), 2015,31(2):390-399.  

    4. [4]

      LI Jin-lin, WAN You-jun, ZHANG Yu-hua, XIONG Hai-feng. Studies on the reduction process of the supported cobalt catalysis for Fischer-Tropsch Synthesis[J]. J South-Cent Univ Natl (Nat Sci Ed), 2007,26(2):1-6.  

    5. [5]

      DUBAL D P, DHAWALE D S, SALUNKHE R R, LOKHANDE C D. Conversion of interlocked cube-like Mn3O4 into nanoflakes of layered bimessite MnO2 during supercapacitive studies[J]. J Alloy Compd, 2010,496(2):370-375.  

    6. [6]

      YANG Y F, JIA L T, HOU B, LI D B, WANG J G, SUN Y H. Incorporation of highly dispersed cobalt nanoparticles into the ordered mesoporous carbon for CO hydrogenation[J]. Catal Lett, 2014,144(1):133-141. doi: 10.1007/s10562-013-1124-1

    7. [7]

      YANG Y F, JIA L T, HOU B, LI D B, WANG J G, SUN Y H. The oxidizing pretreatment-mediated autoreduction behaviour of cobalt nanoparticles supported on ordered mesoporous carbon for Fischer-Tropsch synthesis[J]. Catal Sci Technol, 2014,4(3):717-728. doi: 10.1039/c3cy00729d

    8. [8]

      XIONG Liang, YU Guang-xin, SUN Yu-ping, XIAO Gang. Effects of ZrO2 Promoter on catalytic performance of cobalt catalysts for Fischer-Tropsch Synthesis[J]. Mod Chem Ind, 2015,35(8):91-93.  

    9. [9]

      WANG Tao, DING Yun-jie, XIONG Jian-min, CHEN Wei-miao, YIN Hong-mei, HE Dai-ping, LIN Li, LIN Li-wu. Effects of Zr promoter on catalytic performance of Co/AC catalyst for F-T Synthesis[J]. Chin J Catal, 2005,26(3):178-182.  

    10. [10]

      LI Jin-lin, XIE Wei. Effects of ZrO2 Promoter on performance of carbon nanotube supported cobalt catalysts in Fischer-Tropsch Synthesis[J]. J South-Central Univ Natl (Nat Sci Ed), 2011,30(2):1-5.  

    11. [11]

      BEZEMER G L, RADSTAKE P B, FALKE U, OOSTERBEEK H, KUIPERS H P C E, VAN DILLEN A J, DE JONG K P. Investigation of promoter effects of manganese oxide on carbon nanofiber-supported cobalt catalysts for Fischer-Tropsch synthesis[J]. J Catal, 2006,237(1):152-161. doi: 10.1016/j.jcat.2005.10.031

    12. [12]

      FELTES T E, ESPINOSA A L, SMIT E D, DSOUZA L, MEYER R J, WECKHUYSEN B M, REGALBUTO J R. Selective adsorption of manganese onto cobalt for optimized Mn/Co/TiO2 Fischer-Tropsch catalysts[J]. J Catal, 2010,270(1):95-102. doi: 10.1016/j.jcat.2009.12.012

    13. [13]

      MIYAZAWA T, HANAOKA T, SHIMURA K, HIRATA S. Mn and Zr modified Co/SiO2 catalysts development in slurry-phase Fischer-Tropsch synthesis[J]. Appl Catal, 2013,467:47-54. doi: 10.1016/j.apcata.2013.07.010

    14. [14]

      CHEN Jia-ning, LIU Yong-mei. Effects of Mn-K synergistic action on Iron-based catalyst for CO hydrogenation to light olefins[J]. J Fuel Chem Technol, 2013,41(12):1488-1494.  

    15. [15]

      WANG Li-li, WU Bao-shan, LI Yong-wang. Effects of Ru and Cu promoters on Fischer-Tropsch Synthesis over Fe-based catalysts[J]. Chin J Catal, 2011,32(3):495-501.  

    16. [16]

      ZHANG Jun-ling, REN Jie, CHEN Jian-gang, SUN Yu-han. Effect of manganese promoter on the performance of Co/Al2O3 catalysts for Fischer-Tropsch Synthesis[J]. Acta Phys-Chim Sin, 2002,18(3):260-263.  

    17. [17]

      ZHANG Hao-jian. Study on Zr and K modified Iron-based catalysts for Fischer-Tropsch[D]. Shanghai:East China University Science and Technology, 2012.

    18. [18]

      WANG C, WANG Q X, SUN X D, XU L Y. CO hydrogenation to light alkenes over Mn/Fe catalysts prepared by coprecipitation and sol-gel methods[J]. Catal Lett, 2005,105(1/2):93-101.  

    19. [19]

      CHEN Jian-gang, REN Jie, SUN Yu-han.. Effect of K, Mn and Zr Promoters on performance of Co/SiO2 For F-T Synthesis[J]. J Fuel Chem Technol, 1999,27(S1):108-111.  

    20. [20]

      LI Z, WU J, YU J, HAN D, WU L, LI J. Effect of incorporation manner of Zr on the Co/SBA-15 Catalyst for the Fischer-Tropsch Synthesis[J]. J Mol Catal A:Chem, 2016,424:384-392. doi: 10.1016/j.molcata.2016.09.025

    21. [21]

      ZHOU J H, SUI Z J, ZHU J, LI P, CHEN D, DAI Y C, YUAN W K. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR[J]. Carbon, 2007,45(4):785-796. doi: 10.1016/j.carbon.2006.11.019

    22. [22]

      DINSE A, AIGNER M, ULBRICH M, JOHNSON G R, BELL A T. Effects of Mn promotion on the activity and selectivity of Co/SiO2 for Fischer-Tropsch Synthesis[J]. J Catal, 2012,288:104-114. doi: 10.1016/j.jcat.2012.01.008

    23. [23]

      JOHNSON G R, BELL A T. Role of ZrO2 in promoting the activity and selectivity of Co-based Fischer-Tropsch Synthesis catalysts[J]. ACS Catal, 2016,6(1):100-114. doi: 10.1021/acscatal.5b02205

    24. [24]

      MALESSA R, BAERNS M. Iron-manganese oxide catalysts for Fischer-Tropsch synthesis activity and selectivity[J]. Ind Eng Chen Res, 1988,27(2):279-283. doi: 10.1021/ie00074a013

    25. [25]

      DAI Wei-wei, LIU Da, FU Dong-long, ZHANG Zheng-pai, ZHANG Jun, XU Jing, HAN Yi-fan. Kinetics study of Fischer-Tropsch reaction to lower olefins over MnOx-promoted Fe/SiO2 catalysts[J]. CIESC J, 2015, 66(9):3444-3455.

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    4. [4]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    5. [5]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    6. [6]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    7. [7]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    8. [8]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    9. [9]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    10. [10]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    11. [11]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    12. [12]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    13. [13]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    14. [14]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    15. [15]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    16. [16]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    17. [17]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    18. [18]

      Doudou QinJunyang DingChu LiangQian LiuLigang FengYang LuoGuangzhi HuJun LuoXijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-0. doi: 10.3866/PKU.WHXB202310034

    19. [19]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    20. [20]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

Metrics
  • PDF Downloads(5)
  • Abstract views(1305)
  • HTML views(241)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return