Citation: TONG Yong-chun, WANG Yong-cheng, WANG Qing-yun. Theoretical study on the catalysis activity of PtnCum(n+m=4) for the first dehydrogenation of methanol[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(5): 564-571. shu

Theoretical study on the catalysis activity of PtnCum(n+m=4) for the first dehydrogenation of methanol

  • Corresponding author: WANG Yong-cheng, 598552577@qq.com; ycwang@163.com
  • Received Date: 26 December 2016
    Revised Date: 4 April 2017

    Fund Project: the National Natural Science Foundation of China 21263023Natural Science Foundation of Gansu Province 1606RJYG220General Program of Key Laboratory of Hexi Corridor Resources Utilization of Gansu XZ1606

Figures(8)

  • The B3PW91/LANL2DZ (ECP) method has been used to calculate the geometric parameters of adsorption and dehydrogenation of methanol on PtnCum(n+m=4). All the calculations have been used the Gaussian09 program package. Compared the adsorption energy with dehydrogenation energy barrier, it can be concluded that the path of the adsorption of methyl on the Pt site and the C-H broken is the most favorable reaction in all of the possible paths. When the catalyst of PtnCum (n+m=4) have different Pt and Cu proportions we find the catalytic activity is the best with the Pt and Cu ratio of 1:1.
  • 加载中
    1. [1]

      BRAUCHWEI G, HIBBITTS D, NEUROCK M, WIECKOWSKI A. Electrocatalysis: A direct alcohol fuel cell and surface science perspective[J]. Catal Today, 2013,202:197-209. doi: 10.1016/j.cattod.2012.08.013

    2. [2]

      GREELEY J, MAVRIKAKIS M. Competitive paths for methanol decomposition on Pt (111)[J]. J Am Chem Soc, 2004,126(12):3910-3919. doi: 10.1021/ja037700z

    3. [3]

      GREELEY J, MAVRIKAKIS M. A first-principles study of methanol decomposition on Pt (111)[J]. J Am Chem Soc, 2002,124:7193-7201. doi: 10.1021/ja017818k

    4. [4]

      CAO D, LU G Q, WIECKOWSKI A, WASILESKI S A, NEUROCK M. Mechanisms of methanol decomposition on platinum: A combined experimental and ab initio approach[J]. J Phys Chem B, 2005,109(23):11622-11633. doi: 10.1021/jp0501188

    5. [5]

      JOO S H, KWON K, YOU D J, PAK C, CHANG H, KIM J M. Preparation of high loading Pt nanoparticles on ordered mesoporous carbon with a controlled Pt size and its effects on oxygen reduction and methanol oxidation reactions[J]. Electrochim Acta, 2009,54(24):5746-5753. doi: 10.1016/j.electacta.2009.05.022

    6. [6]

      NIU C Y, JIAO J, XING B, WANG G C, BU X H. Reaction mechanism of methanol decomposition on Pt-based model catalysts: A theoretical study[J]. J Comput Chem, 2010,31(10):2023-2037.  

    7. [7]

      XU Z F, WANG Y X. Effects of alloyed metal on the catalysis activity of Pt for ethanol partial oxidation: Adsorption and dehydrogenation on Pt3M (M=Pt, Ru, Sn, Re, Rh, and Pd)[J]. J Phys Chem C, 2011,115:20565-20571. doi: 10.1021/jp206051k

    8. [8]

      AMANI M, KAZEMEINI M, HAMEDANIAN M, PAHLAVANZADEH H, GHARIBI H. Investigation of methanol oxidation on a highly active and stable Pt-Sn electrocatalyst supported on carbon-polyaniline composite for application in a passive direct methanol fuel cell[J]. Mater Res Bull, 2015,68:166-178. doi: 10.1016/j.materresbull.2015.02.053

    9. [9]

      FENG C, TAKEUCHI T, ABDELKAREEM M A, TSUJIGUCHI T, NAKAGAWA N. Carbon-CeO2 composite nanofibers as a promising support for a PtRu anode catalyst in a direct methanol fuel cell[J]. J Power Sources, 2013,242:57-64. doi: 10.1016/j.jpowsour.2013.04.157

    10. [10]

      ZHAO J F, SUN X L, LI J L, HUANG X R. Theoretical study of methanol C-H and O-H bond activation by PtRu clusters[J]. Acta Phys Chim Sin, 2015,31(5):1077-1085.  

    11. [11]

      ZHU H, GUO Z, ZHANG X, HAN K, GUO Y, WANG F, WEI Y. Methanol-tolerant carbon aerogel-supported Pt-Au catalysts for direct methanol fuel cell[J]. Int J Hydrogen Energy, 2012,37(1):873-876. doi: 10.1016/j.ijhydene.2011.04.032

    12. [12]

      WANG F, ZHABG D J, DING Y. DFT study on CO oxidation catalyzed by PtmAun (m+n=4) clusters: Catalytic mechanism, active component, and the configuration of ideal catalysts[J]. J Phys Chem C, 2010,114(3):14076-14082.  

    13. [13]

      CHEN M, LOU B, NI Z, XU B. PtCo nanoparticles supported on expanded graphite as electrocatalyst for direct methanol fuel cell[J]. Electrochim Acta, 2015,165:105-109. doi: 10.1016/j.electacta.2015.03.007

    14. [14]

      YANG T T, ZHU H, WAN M, DONG L, ZHANG M, DU M. Highly efficient and durable PtCo alloy nanoparticles encapsulated in carbon nanofibers for electrochemical hydrogen generation[J]. Chem Commun, 2016,52(5):990-993. doi: 10.1039/C5CC08097E

    15. [15]

      HUANG Y, ZHENG S, LIN X, SU L, GUO Y. Microwave synthesis and electrochemical performance of a PtPb alloy catalyst for methanol and formic acid oxidation[J]. Electrochim Acta, 2012,63:346-353. doi: 10.1016/j.electacta.2011.12.112

    16. [16]

      WANG J, THOMAS D F, CHEN A. Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks[J]. Anal Chem, 2008,80(4):997-1004. doi: 10.1021/ac701790z

    17. [17]

      OEZASLAN M, STREASSER P. Activity of dealloyed PtCo3 and PtCu3 nanoparticle electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell[J]. J Power Sources, 2011,196(12):5240-5249. doi: 10.1016/j.jpowsour.2010.11.016

    18. [18]

      FU S, ZHU C, SHI Q, XIA H, DU D, LIN Y. Highly branched PtCu bimetallic alloy nanodendrites with superior electrocatalytic activities for oxygen reduction reactions[J]. Nanoscale, 2016,8(9):5076-5081. doi: 10.1039/C5NR07682J

    19. [19]

      LIU Y, HUANG Y, XIE Y, YANG Z, HUANG H, ZHOU Q. Preparation of highly dispersed CuPt nanoparticles on ionic-liquid-assisted graphene sheets for direct methanol fuel cell[J]. Chem Eng J, 2012,197:80-87. doi: 10.1016/j.cej.2012.05.011

    20. [20]

      KOMATSU T, TAMURA A. Pt3Co and PtCu intermetallic compounds: Promising catalysts for preferential oxidation of CO in excess hydrogen[J]. J Catal, 2008,258(2):306-314. doi: 10.1016/j.jcat.2008.06.030

    21. [21]

      ZHANG G, YANG Z, ZHANG W, WANG Y. Facile synthesis of graphene nanoplate-supported porous Pt-Cu alloys with high electrocatalytic properties for methanol oxidation[J]. J Mater Chem A, 2016,4:3316-3323. doi: 10.1039/C5TA09937D

    22. [22]

      CHEN D, ZHAO Y, PENG X, WANG X, HU W, JING C, TIAN J. Star-like PtCu nanoparticles supported on graphene with superior activity for methanol electro-oxidation[J]. Electrochim Acta, 2015,177:86-92. doi: 10.1016/j.electacta.2015.03.066

    23. [23]

      SUN J, SHI J, XU J, CHEN X, ZHANG Z, PENG Z. Enhanced methanol electro-oxidation and oxygen reduction reaction performance of ultrafine nanoporous platinum-copper alloy: Experiment and density functional theory calculation[J]. J Power Sources, 2015,279:334-344. doi: 10.1016/j.jpowsour.2015.01.025

    24. [24]

      HUANG M, GUAN L. Facile synthesis of carbon supported Pt-Cu nanomaterials with surface enriched Pt as highly active anode catalyst for methanol oxidation[J]. Int J Hydrogen Energy, 2015,40(20):6546-6551. doi: 10.1016/j.ijhydene.2015.03.099

    25. [25]

      PERDEW J P, BURKE K, WANG Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system[J]. Phys Rev B Condens Matter, 1996,54(23):16533-16539. doi: 10.1103/PhysRevB.54.16533

    26. [26]

      BECKE A D. Density-functional thermochemistry. Ⅲ. The role of exact exchang[J]. J Chem Phys, 1993,98(7):5648-5652. doi: 10.1063/1.464913

    27. [27]

      FRISCH M J, TRUCKS G W, SCHLEGEL H B, SCUSERIA G E, ROBB M A, CHEESEMAN J R, MONTGOMERY J A J, VREVEN T, KUDIN K N, BURANT J C, MILLAM J M, IYENGAR S S, TOMASI J, BARONE J V, MENUCCI B C M, SCALMANI G, REGA N, PETERSSON G A, NAKATSUJI H, HADA M, EHARA M, TOYOTA K, FUKUDA R, HASEGAWA J, ISHIDA M, NAKAJIMA T, HONDA Y, KITAO O, NAKAI H, KLENE M, Li X, Knox J E, HRATCHIAN H P, CROSS J B, BAKKEN V, ADAMO C, JARAMILLO J, GOMPERTS R, STRATMANN R E, YAZYEV O, AUSTIN A J, CAMMI R, POMELLI C, OCHTERSKI J W, AYALA P Y, MOROKUMA K, VOTH G A, SALVADOR P, DANNENBERG J J, ZAKRZEWSKI V G, DAPPRICH S, DANIELS A D, STRAIN M C, FARKAS O, MALICK D K, RABUCK A D, RAGHAVACHARI K, FORESMAN J B, ORTIZ J V, CUI Q, BABOUL A G, CLIFFORD S, CIOSLOWSKI J, STEFANOV B B, LIU G, LIASHENKO A, PISKORZ P, KOMAROMI I, MARTIN R L, FOX D J, KEITH T, AL-LAHAM M A, PENG C Y, NANAYAKKARA A, CHALLACOMBE M, GILL P M W, JOHNSON B, CHEN W, WONGM W, GONZALEZ C, POPLE J A. Gaussian Inc[J]. Wallingford CT, 2009.

    28. [28]

      HAY P J, WADT W R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals[J]. J Chem Phys, 1985,82(1):299-310. doi: 10.1063/1.448975

    29. [29]

      DESAI S K, NEUROCK M, KOURTAKIS K. A periodic density functional theory study of the dehydrogenation of methanol over Pt (111)[J]. J Phys Chem B, 2002,106(10):2559-2568. doi: 10.1021/jp0132984

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    3. [3]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    4. [4]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    5. [5]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    6. [6]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    7. [7]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    8. [8]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    9. [9]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    10. [10]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    11. [11]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    12. [12]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    13. [13]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    14. [14]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    15. [15]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    16. [16]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    17. [17]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    18. [18]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    19. [19]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    20. [20]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

Metrics
  • PDF Downloads(1)
  • Abstract views(786)
  • HTML views(72)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return