Theoretical study on the catalysis activity of PtnCum(n+m=4) for the first dehydrogenation of methanol
- Corresponding author: WANG Yong-cheng, 598552577@qq.com; ycwang@163.com
Citation:
TONG Yong-chun, WANG Yong-cheng, WANG Qing-yun. Theoretical study on the catalysis activity of PtnCum(n+m=4) for the first dehydrogenation of methanol[J]. Journal of Fuel Chemistry and Technology,
;2017, 45(5): 564-571.
BRAUCHWEI G, HIBBITTS D, NEUROCK M, WIECKOWSKI A. Electrocatalysis: A direct alcohol fuel cell and surface science perspective[J]. Catal Today, 2013,202:197-209. doi: 10.1016/j.cattod.2012.08.013
GREELEY J, MAVRIKAKIS M. Competitive paths for methanol decomposition on Pt (111)[J]. J Am Chem Soc, 2004,126(12):3910-3919. doi: 10.1021/ja037700z
GREELEY J, MAVRIKAKIS M. A first-principles study of methanol decomposition on Pt (111)[J]. J Am Chem Soc, 2002,124:7193-7201. doi: 10.1021/ja017818k
CAO D, LU G Q, WIECKOWSKI A, WASILESKI S A, NEUROCK M. Mechanisms of methanol decomposition on platinum: A combined experimental and ab initio approach[J]. J Phys Chem B, 2005,109(23):11622-11633. doi: 10.1021/jp0501188
JOO S H, KWON K, YOU D J, PAK C, CHANG H, KIM J M. Preparation of high loading Pt nanoparticles on ordered mesoporous carbon with a controlled Pt size and its effects on oxygen reduction and methanol oxidation reactions[J]. Electrochim Acta, 2009,54(24):5746-5753. doi: 10.1016/j.electacta.2009.05.022
NIU C Y, JIAO J, XING B, WANG G C, BU X H. Reaction mechanism of methanol decomposition on Pt-based model catalysts: A theoretical study[J]. J Comput Chem, 2010,31(10):2023-2037.
XU Z F, WANG Y X. Effects of alloyed metal on the catalysis activity of Pt for ethanol partial oxidation: Adsorption and dehydrogenation on Pt3M (M=Pt, Ru, Sn, Re, Rh, and Pd)[J]. J Phys Chem C, 2011,115:20565-20571. doi: 10.1021/jp206051k
AMANI M, KAZEMEINI M, HAMEDANIAN M, PAHLAVANZADEH H, GHARIBI H. Investigation of methanol oxidation on a highly active and stable Pt-Sn electrocatalyst supported on carbon-polyaniline composite for application in a passive direct methanol fuel cell[J]. Mater Res Bull, 2015,68:166-178. doi: 10.1016/j.materresbull.2015.02.053
FENG C, TAKEUCHI T, ABDELKAREEM M A, TSUJIGUCHI T, NAKAGAWA N. Carbon-CeO2 composite nanofibers as a promising support for a PtRu anode catalyst in a direct methanol fuel cell[J]. J Power Sources, 2013,242:57-64. doi: 10.1016/j.jpowsour.2013.04.157
ZHAO J F, SUN X L, LI J L, HUANG X R. Theoretical study of methanol C-H and O-H bond activation by PtRu clusters[J]. Acta Phys Chim Sin, 2015,31(5):1077-1085.
ZHU H, GUO Z, ZHANG X, HAN K, GUO Y, WANG F, WEI Y. Methanol-tolerant carbon aerogel-supported Pt-Au catalysts for direct methanol fuel cell[J]. Int J Hydrogen Energy, 2012,37(1):873-876. doi: 10.1016/j.ijhydene.2011.04.032
WANG F, ZHABG D J, DING Y. DFT study on CO oxidation catalyzed by PtmAun (m+n=4) clusters: Catalytic mechanism, active component, and the configuration of ideal catalysts[J]. J Phys Chem C, 2010,114(3):14076-14082.
CHEN M, LOU B, NI Z, XU B. PtCo nanoparticles supported on expanded graphite as electrocatalyst for direct methanol fuel cell[J]. Electrochim Acta, 2015,165:105-109. doi: 10.1016/j.electacta.2015.03.007
YANG T T, ZHU H, WAN M, DONG L, ZHANG M, DU M. Highly efficient and durable PtCo alloy nanoparticles encapsulated in carbon nanofibers for electrochemical hydrogen generation[J]. Chem Commun, 2016,52(5):990-993. doi: 10.1039/C5CC08097E
HUANG Y, ZHENG S, LIN X, SU L, GUO Y. Microwave synthesis and electrochemical performance of a PtPb alloy catalyst for methanol and formic acid oxidation[J]. Electrochim Acta, 2012,63:346-353. doi: 10.1016/j.electacta.2011.12.112
WANG J, THOMAS D F, CHEN A. Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks[J]. Anal Chem, 2008,80(4):997-1004. doi: 10.1021/ac701790z
OEZASLAN M, STREASSER P. Activity of dealloyed PtCo3 and PtCu3 nanoparticle electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell[J]. J Power Sources, 2011,196(12):5240-5249. doi: 10.1016/j.jpowsour.2010.11.016
FU S, ZHU C, SHI Q, XIA H, DU D, LIN Y. Highly branched PtCu bimetallic alloy nanodendrites with superior electrocatalytic activities for oxygen reduction reactions[J]. Nanoscale, 2016,8(9):5076-5081. doi: 10.1039/C5NR07682J
LIU Y, HUANG Y, XIE Y, YANG Z, HUANG H, ZHOU Q. Preparation of highly dispersed CuPt nanoparticles on ionic-liquid-assisted graphene sheets for direct methanol fuel cell[J]. Chem Eng J, 2012,197:80-87. doi: 10.1016/j.cej.2012.05.011
KOMATSU T, TAMURA A. Pt3Co and PtCu intermetallic compounds: Promising catalysts for preferential oxidation of CO in excess hydrogen[J]. J Catal, 2008,258(2):306-314. doi: 10.1016/j.jcat.2008.06.030
ZHANG G, YANG Z, ZHANG W, WANG Y. Facile synthesis of graphene nanoplate-supported porous Pt-Cu alloys with high electrocatalytic properties for methanol oxidation[J]. J Mater Chem A, 2016,4:3316-3323. doi: 10.1039/C5TA09937D
CHEN D, ZHAO Y, PENG X, WANG X, HU W, JING C, TIAN J. Star-like PtCu nanoparticles supported on graphene with superior activity for methanol electro-oxidation[J]. Electrochim Acta, 2015,177:86-92. doi: 10.1016/j.electacta.2015.03.066
SUN J, SHI J, XU J, CHEN X, ZHANG Z, PENG Z. Enhanced methanol electro-oxidation and oxygen reduction reaction performance of ultrafine nanoporous platinum-copper alloy: Experiment and density functional theory calculation[J]. J Power Sources, 2015,279:334-344. doi: 10.1016/j.jpowsour.2015.01.025
HUANG M, GUAN L. Facile synthesis of carbon supported Pt-Cu nanomaterials with surface enriched Pt as highly active anode catalyst for methanol oxidation[J]. Int J Hydrogen Energy, 2015,40(20):6546-6551. doi: 10.1016/j.ijhydene.2015.03.099
PERDEW J P, BURKE K, WANG Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system[J]. Phys Rev B Condens Matter, 1996,54(23):16533-16539. doi: 10.1103/PhysRevB.54.16533
BECKE A D. Density-functional thermochemistry. Ⅲ. The role of exact exchang[J]. J Chem Phys, 1993,98(7):5648-5652. doi: 10.1063/1.464913
FRISCH M J, TRUCKS G W, SCHLEGEL H B, SCUSERIA G E, ROBB M A, CHEESEMAN J R, MONTGOMERY J A J, VREVEN T, KUDIN K N, BURANT J C, MILLAM J M, IYENGAR S S, TOMASI J, BARONE J V, MENUCCI B C M, SCALMANI G, REGA N, PETERSSON G A, NAKATSUJI H, HADA M, EHARA M, TOYOTA K, FUKUDA R, HASEGAWA J, ISHIDA M, NAKAJIMA T, HONDA Y, KITAO O, NAKAI H, KLENE M, Li X, Knox J E, HRATCHIAN H P, CROSS J B, BAKKEN V, ADAMO C, JARAMILLO J, GOMPERTS R, STRATMANN R E, YAZYEV O, AUSTIN A J, CAMMI R, POMELLI C, OCHTERSKI J W, AYALA P Y, MOROKUMA K, VOTH G A, SALVADOR P, DANNENBERG J J, ZAKRZEWSKI V G, DAPPRICH S, DANIELS A D, STRAIN M C, FARKAS O, MALICK D K, RABUCK A D, RAGHAVACHARI K, FORESMAN J B, ORTIZ J V, CUI Q, BABOUL A G, CLIFFORD S, CIOSLOWSKI J, STEFANOV B B, LIU G, LIASHENKO A, PISKORZ P, KOMAROMI I, MARTIN R L, FOX D J, KEITH T, AL-LAHAM M A, PENG C Y, NANAYAKKARA A, CHALLACOMBE M, GILL P M W, JOHNSON B, CHEN W, WONGM W, GONZALEZ C, POPLE J A. Gaussian Inc[J]. Wallingford CT, 2009.
HAY P J, WADT W R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals[J]. J Chem Phys, 1985,82(1):299-310. doi: 10.1063/1.448975
DESAI S K, NEUROCK M, KOURTAKIS K. A periodic density functional theory study of the dehydrogenation of methanol over Pt (111)[J]. J Phys Chem B, 2002,106(10):2559-2568. doi: 10.1021/jp0132984
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Wei Sun , Yongjing Wang , Kun Xiang , Saishuai Bai , Haitao Wang , Jing Zou , Arramel , Jizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
Zhi Chai , Huashan Huang , Xukai Shi , Yujing Lan , Zhentao Yuan , Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046
Bolin Sun , Jie Chen , Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
Tongqi Ye , Yanqing Wang , Qi Wang , Huaiping Cong , Xianghua Kong , Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128
Xiaochen Zhang , Fei Yu , Jie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026
(a): adsorption energies; (b): dehydrogenation barriers ■: H-Pt; ●: H-Cu; ▲: O-Pt; ▼: O-Cu