Citation: DENG Hao-yue, GAO Zhi-hua, HUANG Wei. Effect of heat treatment time on the performance of CuZnAl catalysts in the synthesis of higher alcohols from syngas[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(5): 532-539. shu

Effect of heat treatment time on the performance of CuZnAl catalysts in the synthesis of higher alcohols from syngas

  • Corresponding author: GAO Zhi-hua, gaozhihua@tyut.edu.cn
  • Received Date: 25 January 2019
    Revised Date: 19 March 2019

    Fund Project: Natural Science Foundation of Shanxi Province 201601D011021The project was supported by the National Natural Science Foundation of China (21336006) and Natural Science Foundation of Shanxi Province (201601D011021, 201601D202017)Natural Science Foundation of Shanxi Province 201601D202017the National Natural Science Foundation of China 21336006

Figures(6)

  • A series of CuZnAl catalysts were prepared by the complete liquid-phase method with different heat treatment times and characterized by XPS, XRD, H2-TPR, NH3-TPD-MS and N2 adsorption-desorption; their catalytic performances in the synthesis of higher alcohols from syngas were investigated in a slurry bed reactor. The results indicate that an increase in the heat treatment time can enhance the interaction between the Cu and Al species and alter the amount of Cu+ species over the CuZnAl catalysts, influencing the synergistic effect of Cu+-Cu0 sites. In addition, with the increase of heat treatment time, the surface acidity of CuZnAl catalyst decreases, accompanying with an increase in the pore volume and pore size; small amount of surface weak acid sites, large pore volume and large pore size are beneficial to the formation of higher alcohols. The CuZnAl catalyst obtained by heat-treating for 7 h exhibits excellent performance in the synthesis of higher alcohols, with a CO conversion of 38.1% and a higher alcohols mass fraction of 65.9% in the total alcohols.
  • 加载中
    1. [1]

      SUBRAMANI V, GANGWAL S K. A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol[J]. Energy Fuels, 2008,22(2):117-136.  

    2. [2]

      GUPTA M, SMITH M L, SPIVEY J J. Heterogeneous catalytic conversion of dry syngas to ethanol and higher alcohols on cu-based catalysts[J]. Acs Catal, 2011,1(6):641-656. doi: 10.1021/cs2001048

    3. [3]

      LUK H T, MONDELLI C, FERRE D C, STEWART J A, PEREZ R. Status and prospects in higher alcohols synthesis from syngas[J]. Chem Soc Rev, 2017,46(5):1358-1426. doi: 10.1039/C6CS00324A

    4. [4]

      JAKOBSEN J G, JAKOBSEN M, CHORKENDORFF I, SEHESTED J. Methane steam reforming kinetics for a rhodium-based catalyst[J]. Catal Lett, 2010,140(3):90-97.  

    5. [5]

      BAEK S C, BAE J W, CHEON J Y, JUN K W, LEE K Y. Combined steam and carbon dioxide reforming of methane on Ni/MgAl2O4:Effect of CeO2 promoter to catalytic performance[J]. Catal Lett, 2011,141(2):224-234.  

    6. [6]

      MEI D, ROUSSEAU R, KATHMANN S M. Ethanol synthesis from syngas over Rh-based/SiO2 catalysts:A combined experimental and theoretical modeling study[J]. J Catal, 2010,271(2):325-342.  

    7. [7]

      YANG X M, WEI Y, SU Y L, ZHOU L P. Characterization of fused Fe-Cu based catalyst for higher alcohols synthesis and DRIFTS investigation of TPSR[J]. Fuel Process Technol, 2010,91(9):1168-1173. doi: 10.1016/j.fuproc.2010.03.032

    8. [8]

      HERACLEOUS E, LIAKAKOU E T, LAPPAS A A, LEMONIDOU A A. Investigation of K-promoted Cu-Zn-Al, Cu-X-Al and Cu-Zn-X (X=Cr, Mn) catalysts for carbon monoxide hydrogenation to higher alcohols[J]. Appl Catal A:Gen, 2013,455(2):145-154.  

    9. [9]

      GAO Z H, HAO L F, HUANG W, XIE K C. A novel liquid-phase technology for the preparation of slurry catalysts[J]. Catal Lett, 2005,102(3/4):139-141.  

    10. [10]

      HUANG W, YU L M, LI W H, MA Z L. Synthesis of methanol and ethanol over CuZnAl slurry catalyst prepared by complete liquid-phase technology[J]. Front Chem Eng China, 2010,4(4):472-475.  

    11. [11]

      YU Shi-rui. Study on the preparation and performance of Cu-based catalyst for ethanol synthesis in slurry reactor[D]. Taiyuan: Taiyuan University of Technology, 2013.

    12. [12]

      LIU Yong-jun. Study on the ethanol synthesis from syngas over CuZnAl catalysts[D]. Taiyuan: Taiyuan University of Technology, 2016.

    13. [13]

      DONG Wei-bing. Effect of heat treatment conditions on catalytic performance of CuZnAl catalysts for higher alcohol synthesis[D]. Taiyuan: Taiyuan University of Technology, 2017. 

    14. [14]

      SCHULZ H. Short history and present trends of Fischer-Tropsch synthesis[J]. Appl Catal A:Gen, 1999,186(1/2):3-12.  

    15. [15]

      YE Tong-qi, ZHANG Zhao-xia, XU Yong, YAN Shi-zhi, ZHU Jiu-fang, LIU Yong, LI Quan-xin. Higher alcohol synthesis from bio-syngas over Na-promoted CuCoMn catalyst[J]. Acta Phys-Chim Sin, 2011,27(6):1493-1500. doi: 10.3866/PKU.WHXB20110610

    16. [16]

      BOZ I. Higher alcohol synthesis over a K-promoted Co2O3/CuO/ZnO/Al2O3 catalyst[J]. Catal Lett, 2003,87(3/4):187-194. doi: 10.1023/A:1023499324647

    17. [17]

      LI Z H, ZUO Z J, HUANG W, XIE K C. Research on Si-Al based catalysts prepared by complete liquid-phase method for DME synthesis in a slurry reactor[J]. Appl Surf Sci, 2011,257(6):2180-2183. doi: 10.1016/j.apsusc.2010.09.069

    18. [18]

      SUH Y W, MOON S H, RHEE H K. Active sites in Cu/ZnO/ZrO2 catalysts for methanol synthesis from CO/H2[J]. Catal Today, 2000,63(2/4):447-452.  

    19. [19]

      GAO W, ZHAO Y F, LIU J M, HUANG Q W, HE S, LI C M, ZHAO J W, WEI M. Catalytic conversion of syngas to mixed alcohols over CuFe-based catalysts derived from layered double hydroxides[J]. Catal Sci Technol, 2013,3(5):1324-1332. doi: 10.1039/c3cy00025g

    20. [20]

      FIGUEIREDO R T, MARTINEZ-ARIAS A, GRANADOS M L, FIERRO J L G. Spectroscopic evidence of Cu-Al interactions in Cu-Zn-Al mixed oxide catalysts used in CO hydrogenation[J]. J Catal, 1998,178(1):146-152.  

    21. [21]

      GAO Zhi-hua, HUANG Wei, LI Jun-fang, YIN Li-hua, XIE Ke-chang. Liquid-phase preparation of DME slurry catalysts using pseudo-boehmite as aluminum source[J]. Chem J Chin Univ, 2009,30(3):534-538. doi: 10.3321/j.issn:0251-0790.2009.03.020

    22. [22]

      FANG De-ren, LIU Zhong-min, LIU De-chen, ZHANG Hui-min, MENG Shuang-he, WANG Li-gang. Influence of Al salt addition methods on performance of CuO/ZnO/Al2O3 catalysts[J]. Petrochem Technol, 2004,33(11):1041-1045. doi: 10.3321/j.issn:1000-8144.2004.11.008

    23. [23]

      LIU Y J, ZUO Z J, LIU C B, LI C, DENG X, HUANG W. Higher alcohols synthesis via CO hydrogenation on Cu/Zn/Al/Zr catalysts without alkalis and F-T elements[J]. Fuel Process Technol, 2016,144:186-190. doi: 10.1016/j.fuproc.2016.01.005

    24. [24]

      DONG Wei-bing, HAO Shu-hong, GAO Zhi-hua. Effect of preheating liquid paraffin on synthesis of higher alcohols by CuZnAl catalyst[J]. Nat Gas Chem Ind, 2017,42(5):27-33. doi: 10.3969/j.issn.1001-9219.2017.05.006

    25. [25]

      MAO Dong-sen, GUO Qiang-sheng, YU Jun, HAN Lu-peng, LU Guan-zhong. Effect of cerium addition on the catalytic performance of Cu-Fe/SiO2 for the synthesis of lower alcohols from syngas[J]. Acta Phys-Chim Sin, 2011,27(11):2639-2645. doi: 10.3866/PKU.WHXB20111125

    26. [26]

      XU Hui-yuan, CHU Wei, SHI Li-min, ZHANG Hui, DENG Si-yu. Effect of glow discharge plasma on copper-cobalt-aluminum catalysts for higher alcohols synthesis[J]. J Fuel Chem Technol, 2009,37(2):212-216. doi: 10.3969/j.issn.0253-2409.2009.02.016 

    27. [27]

      CHU W, KIEFFER R, KIENNEMANN A, HINDERMANN J P. Conversion of syngas to C1-C6 alcohol mixtures on promoted CuLa2Zr2O7 catalysts[J]. Appl Catal A:Gen, 1995,27(121):95-111.  

    28. [28]

      OKAMOTO Y, FUKINO K, IMANAKA T, TERANISHI S. Surface characterization of copper(Ⅱ) oxide-zinc oxide methanol-synthesis catalysts by x-ray photoelectron spectroscopy. 2. Reduced catalysts[J]. J Phys Chem, 1983,87(19):3740-3747. doi: 10.1021/j100242a034

    29. [29]

      FAN Jin-chuan, YANG Rui-qing, ZHAO Jie, HUANG Wei. Chemical change of copper species in liquid paraffin[J]. Chin J Appl Chem, 2013,30(1):67-72.  

    30. [30]

      LV Xiao-dong. The study of preparation and synthesis of ethanol of Cu-Zn-Al catalyst by complete liquid-phase technology[D]. Taiyuan: Taiyuan University of Technology, 2015. 

    31. [31]

      SUN Kai, ZHANG Xiao-yu, ZHANG Lin, BIAN Zhong-kai, HUANG Wei, ZHAO Zhi-huan. Influence of acidic and alkaline silica sols on the performance of Cu/Zn/Al slurry catalysts[J]. J Fuel Chem Technol, 2015,43(10):1221-1229. doi: 10.3969/j.issn.0253-2409.2015.10.010 

    32. [32]

      MA Qiang, HUANG Wei, FAN Jin-chuan, ZHAO Jie, REN Jie. Study on the deactivation of Cu-Zn-Si-Al slurry catalyst prepared by complete liquid-phase for one-step dimethyl ether synthesis[J]. J Mol Catal(China), 2009,23(6):499-505.  

    33. [33]

      GAO Z H, LIU Y, LI L L, LI S S, HUANG W. CuZnAl catalysts prepared by precipitation-hydrothermal method for higher alcohols synthesis from syngas[J]. Energy Source Part A, 2017,39(6):1-7.  

    34. [34]

      LIU Jian-guo, DING Ming-yue, WANG Tie-jun, MA Long-long. Structure and performance of Cu-Fe bimodal support for higher alcohol syntheses[J]. Acta Phys-Chim Sin, 2012,28(8):1964-1970. doi: 10.3866/PKU.WHXB201205213

  • 加载中
    1. [1]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    2. [2]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    3. [3]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    4. [4]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    8. [8]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    9. [9]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    10. [10]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    11. [11]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    12. [12]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    13. [13]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    16. [16]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    17. [17]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    18. [18]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    19. [19]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    20. [20]

      Yanxue WuXijun XuShanshan ShiFangkun LiShaomin JiJingwei ZhaoJun LiuYanping Huo . Facile construction of Cu2-xSe@C nanobelts as anode for superior sodium-ion storage. Chinese Chemical Letters, 2025, 36(6): 110062-. doi: 10.1016/j.cclet.2024.110062

Metrics
  • PDF Downloads(7)
  • Abstract views(799)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return