Citation: DENG Hao-yue, GAO Zhi-hua, HUANG Wei. Effect of heat treatment time on the performance of CuZnAl catalysts in the synthesis of higher alcohols from syngas[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(5): 532-539. shu

Effect of heat treatment time on the performance of CuZnAl catalysts in the synthesis of higher alcohols from syngas

  • Corresponding author: GAO Zhi-hua, gaozhihua@tyut.edu.cn
  • Received Date: 25 January 2019
    Revised Date: 19 March 2019

    Fund Project: Natural Science Foundation of Shanxi Province 201601D011021The project was supported by the National Natural Science Foundation of China (21336006) and Natural Science Foundation of Shanxi Province (201601D011021, 201601D202017)Natural Science Foundation of Shanxi Province 201601D202017the National Natural Science Foundation of China 21336006

Figures(6)

  • A series of CuZnAl catalysts were prepared by the complete liquid-phase method with different heat treatment times and characterized by XPS, XRD, H2-TPR, NH3-TPD-MS and N2 adsorption-desorption; their catalytic performances in the synthesis of higher alcohols from syngas were investigated in a slurry bed reactor. The results indicate that an increase in the heat treatment time can enhance the interaction between the Cu and Al species and alter the amount of Cu+ species over the CuZnAl catalysts, influencing the synergistic effect of Cu+-Cu0 sites. In addition, with the increase of heat treatment time, the surface acidity of CuZnAl catalyst decreases, accompanying with an increase in the pore volume and pore size; small amount of surface weak acid sites, large pore volume and large pore size are beneficial to the formation of higher alcohols. The CuZnAl catalyst obtained by heat-treating for 7 h exhibits excellent performance in the synthesis of higher alcohols, with a CO conversion of 38.1% and a higher alcohols mass fraction of 65.9% in the total alcohols.
  • 加载中
    1. [1]

      SUBRAMANI V, GANGWAL S K. A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol[J]. Energy Fuels, 2008,22(2):117-136.  

    2. [2]

      GUPTA M, SMITH M L, SPIVEY J J. Heterogeneous catalytic conversion of dry syngas to ethanol and higher alcohols on cu-based catalysts[J]. Acs Catal, 2011,1(6):641-656. doi: 10.1021/cs2001048

    3. [3]

      LUK H T, MONDELLI C, FERRE D C, STEWART J A, PEREZ R. Status and prospects in higher alcohols synthesis from syngas[J]. Chem Soc Rev, 2017,46(5):1358-1426. doi: 10.1039/C6CS00324A

    4. [4]

      JAKOBSEN J G, JAKOBSEN M, CHORKENDORFF I, SEHESTED J. Methane steam reforming kinetics for a rhodium-based catalyst[J]. Catal Lett, 2010,140(3):90-97.  

    5. [5]

      BAEK S C, BAE J W, CHEON J Y, JUN K W, LEE K Y. Combined steam and carbon dioxide reforming of methane on Ni/MgAl2O4:Effect of CeO2 promoter to catalytic performance[J]. Catal Lett, 2011,141(2):224-234.  

    6. [6]

      MEI D, ROUSSEAU R, KATHMANN S M. Ethanol synthesis from syngas over Rh-based/SiO2 catalysts:A combined experimental and theoretical modeling study[J]. J Catal, 2010,271(2):325-342.  

    7. [7]

      YANG X M, WEI Y, SU Y L, ZHOU L P. Characterization of fused Fe-Cu based catalyst for higher alcohols synthesis and DRIFTS investigation of TPSR[J]. Fuel Process Technol, 2010,91(9):1168-1173. doi: 10.1016/j.fuproc.2010.03.032

    8. [8]

      HERACLEOUS E, LIAKAKOU E T, LAPPAS A A, LEMONIDOU A A. Investigation of K-promoted Cu-Zn-Al, Cu-X-Al and Cu-Zn-X (X=Cr, Mn) catalysts for carbon monoxide hydrogenation to higher alcohols[J]. Appl Catal A:Gen, 2013,455(2):145-154.  

    9. [9]

      GAO Z H, HAO L F, HUANG W, XIE K C. A novel liquid-phase technology for the preparation of slurry catalysts[J]. Catal Lett, 2005,102(3/4):139-141.  

    10. [10]

      HUANG W, YU L M, LI W H, MA Z L. Synthesis of methanol and ethanol over CuZnAl slurry catalyst prepared by complete liquid-phase technology[J]. Front Chem Eng China, 2010,4(4):472-475.  

    11. [11]

      YU Shi-rui. Study on the preparation and performance of Cu-based catalyst for ethanol synthesis in slurry reactor[D]. Taiyuan: Taiyuan University of Technology, 2013.

    12. [12]

      LIU Yong-jun. Study on the ethanol synthesis from syngas over CuZnAl catalysts[D]. Taiyuan: Taiyuan University of Technology, 2016.

    13. [13]

      DONG Wei-bing. Effect of heat treatment conditions on catalytic performance of CuZnAl catalysts for higher alcohol synthesis[D]. Taiyuan: Taiyuan University of Technology, 2017. 

    14. [14]

      SCHULZ H. Short history and present trends of Fischer-Tropsch synthesis[J]. Appl Catal A:Gen, 1999,186(1/2):3-12.  

    15. [15]

      YE Tong-qi, ZHANG Zhao-xia, XU Yong, YAN Shi-zhi, ZHU Jiu-fang, LIU Yong, LI Quan-xin. Higher alcohol synthesis from bio-syngas over Na-promoted CuCoMn catalyst[J]. Acta Phys-Chim Sin, 2011,27(6):1493-1500. doi: 10.3866/PKU.WHXB20110610

    16. [16]

      BOZ I. Higher alcohol synthesis over a K-promoted Co2O3/CuO/ZnO/Al2O3 catalyst[J]. Catal Lett, 2003,87(3/4):187-194. doi: 10.1023/A:1023499324647

    17. [17]

      LI Z H, ZUO Z J, HUANG W, XIE K C. Research on Si-Al based catalysts prepared by complete liquid-phase method for DME synthesis in a slurry reactor[J]. Appl Surf Sci, 2011,257(6):2180-2183. doi: 10.1016/j.apsusc.2010.09.069

    18. [18]

      SUH Y W, MOON S H, RHEE H K. Active sites in Cu/ZnO/ZrO2 catalysts for methanol synthesis from CO/H2[J]. Catal Today, 2000,63(2/4):447-452.  

    19. [19]

      GAO W, ZHAO Y F, LIU J M, HUANG Q W, HE S, LI C M, ZHAO J W, WEI M. Catalytic conversion of syngas to mixed alcohols over CuFe-based catalysts derived from layered double hydroxides[J]. Catal Sci Technol, 2013,3(5):1324-1332. doi: 10.1039/c3cy00025g

    20. [20]

      FIGUEIREDO R T, MARTINEZ-ARIAS A, GRANADOS M L, FIERRO J L G. Spectroscopic evidence of Cu-Al interactions in Cu-Zn-Al mixed oxide catalysts used in CO hydrogenation[J]. J Catal, 1998,178(1):146-152.  

    21. [21]

      GAO Zhi-hua, HUANG Wei, LI Jun-fang, YIN Li-hua, XIE Ke-chang. Liquid-phase preparation of DME slurry catalysts using pseudo-boehmite as aluminum source[J]. Chem J Chin Univ, 2009,30(3):534-538. doi: 10.3321/j.issn:0251-0790.2009.03.020

    22. [22]

      FANG De-ren, LIU Zhong-min, LIU De-chen, ZHANG Hui-min, MENG Shuang-he, WANG Li-gang. Influence of Al salt addition methods on performance of CuO/ZnO/Al2O3 catalysts[J]. Petrochem Technol, 2004,33(11):1041-1045. doi: 10.3321/j.issn:1000-8144.2004.11.008

    23. [23]

      LIU Y J, ZUO Z J, LIU C B, LI C, DENG X, HUANG W. Higher alcohols synthesis via CO hydrogenation on Cu/Zn/Al/Zr catalysts without alkalis and F-T elements[J]. Fuel Process Technol, 2016,144:186-190. doi: 10.1016/j.fuproc.2016.01.005

    24. [24]

      DONG Wei-bing, HAO Shu-hong, GAO Zhi-hua. Effect of preheating liquid paraffin on synthesis of higher alcohols by CuZnAl catalyst[J]. Nat Gas Chem Ind, 2017,42(5):27-33. doi: 10.3969/j.issn.1001-9219.2017.05.006

    25. [25]

      MAO Dong-sen, GUO Qiang-sheng, YU Jun, HAN Lu-peng, LU Guan-zhong. Effect of cerium addition on the catalytic performance of Cu-Fe/SiO2 for the synthesis of lower alcohols from syngas[J]. Acta Phys-Chim Sin, 2011,27(11):2639-2645. doi: 10.3866/PKU.WHXB20111125

    26. [26]

      XU Hui-yuan, CHU Wei, SHI Li-min, ZHANG Hui, DENG Si-yu. Effect of glow discharge plasma on copper-cobalt-aluminum catalysts for higher alcohols synthesis[J]. J Fuel Chem Technol, 2009,37(2):212-216. doi: 10.3969/j.issn.0253-2409.2009.02.016 

    27. [27]

      CHU W, KIEFFER R, KIENNEMANN A, HINDERMANN J P. Conversion of syngas to C1-C6 alcohol mixtures on promoted CuLa2Zr2O7 catalysts[J]. Appl Catal A:Gen, 1995,27(121):95-111.  

    28. [28]

      OKAMOTO Y, FUKINO K, IMANAKA T, TERANISHI S. Surface characterization of copper(Ⅱ) oxide-zinc oxide methanol-synthesis catalysts by x-ray photoelectron spectroscopy. 2. Reduced catalysts[J]. J Phys Chem, 1983,87(19):3740-3747. doi: 10.1021/j100242a034

    29. [29]

      FAN Jin-chuan, YANG Rui-qing, ZHAO Jie, HUANG Wei. Chemical change of copper species in liquid paraffin[J]. Chin J Appl Chem, 2013,30(1):67-72.  

    30. [30]

      LV Xiao-dong. The study of preparation and synthesis of ethanol of Cu-Zn-Al catalyst by complete liquid-phase technology[D]. Taiyuan: Taiyuan University of Technology, 2015. 

    31. [31]

      SUN Kai, ZHANG Xiao-yu, ZHANG Lin, BIAN Zhong-kai, HUANG Wei, ZHAO Zhi-huan. Influence of acidic and alkaline silica sols on the performance of Cu/Zn/Al slurry catalysts[J]. J Fuel Chem Technol, 2015,43(10):1221-1229. doi: 10.3969/j.issn.0253-2409.2015.10.010 

    32. [32]

      MA Qiang, HUANG Wei, FAN Jin-chuan, ZHAO Jie, REN Jie. Study on the deactivation of Cu-Zn-Si-Al slurry catalyst prepared by complete liquid-phase for one-step dimethyl ether synthesis[J]. J Mol Catal(China), 2009,23(6):499-505.  

    33. [33]

      GAO Z H, LIU Y, LI L L, LI S S, HUANG W. CuZnAl catalysts prepared by precipitation-hydrothermal method for higher alcohols synthesis from syngas[J]. Energy Source Part A, 2017,39(6):1-7.  

    34. [34]

      LIU Jian-guo, DING Ming-yue, WANG Tie-jun, MA Long-long. Structure and performance of Cu-Fe bimodal support for higher alcohol syntheses[J]. Acta Phys-Chim Sin, 2012,28(8):1964-1970. doi: 10.3866/PKU.WHXB201205213

  • 加载中
    1. [1]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    2. [2]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    3. [3]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    4. [4]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    5. [5]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    9. [9]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    10. [10]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    11. [11]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    12. [12]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    13. [13]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    14. [14]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    15. [15]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    16. [16]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    17. [17]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    18. [18]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    19. [19]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    20. [20]

      Yanxue WuXijun XuShanshan ShiFangkun LiShaomin JiJingwei ZhaoJun LiuYanping Huo . Facile construction of Cu2-xSe@C nanobelts as anode for superior sodium-ion storage. Chinese Chemical Letters, 2025, 36(6): 110062-. doi: 10.1016/j.cclet.2024.110062

Metrics
  • PDF Downloads(7)
  • Abstract views(855)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return