Effect of heat treatment time on the performance of CuZnAl catalysts in the synthesis of higher alcohols from syngas
- Corresponding author: GAO Zhi-hua, gaozhihua@tyut.edu.cn
Citation:
DENG Hao-yue, GAO Zhi-hua, HUANG Wei. Effect of heat treatment time on the performance of CuZnAl catalysts in the synthesis of higher alcohols from syngas[J]. Journal of Fuel Chemistry and Technology,
;2019, 47(5): 532-539.
SUBRAMANI V, GANGWAL S K. A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol[J]. Energy Fuels, 2008,22(2):117-136.
GUPTA M, SMITH M L, SPIVEY J J. Heterogeneous catalytic conversion of dry syngas to ethanol and higher alcohols on cu-based catalysts[J]. Acs Catal, 2011,1(6):641-656. doi: 10.1021/cs2001048
LUK H T, MONDELLI C, FERRE D C, STEWART J A, PEREZ R. Status and prospects in higher alcohols synthesis from syngas[J]. Chem Soc Rev, 2017,46(5):1358-1426. doi: 10.1039/C6CS00324A
JAKOBSEN J G, JAKOBSEN M, CHORKENDORFF I, SEHESTED J. Methane steam reforming kinetics for a rhodium-based catalyst[J]. Catal Lett, 2010,140(3):90-97.
BAEK S C, BAE J W, CHEON J Y, JUN K W, LEE K Y. Combined steam and carbon dioxide reforming of methane on Ni/MgAl2O4:Effect of CeO2 promoter to catalytic performance[J]. Catal Lett, 2011,141(2):224-234.
MEI D, ROUSSEAU R, KATHMANN S M. Ethanol synthesis from syngas over Rh-based/SiO2 catalysts:A combined experimental and theoretical modeling study[J]. J Catal, 2010,271(2):325-342.
YANG X M, WEI Y, SU Y L, ZHOU L P. Characterization of fused Fe-Cu based catalyst for higher alcohols synthesis and DRIFTS investigation of TPSR[J]. Fuel Process Technol, 2010,91(9):1168-1173. doi: 10.1016/j.fuproc.2010.03.032
HERACLEOUS E, LIAKAKOU E T, LAPPAS A A, LEMONIDOU A A. Investigation of K-promoted Cu-Zn-Al, Cu-X-Al and Cu-Zn-X (X=Cr, Mn) catalysts for carbon monoxide hydrogenation to higher alcohols[J]. Appl Catal A:Gen, 2013,455(2):145-154.
GAO Z H, HAO L F, HUANG W, XIE K C. A novel liquid-phase technology for the preparation of slurry catalysts[J]. Catal Lett, 2005,102(3/4):139-141.
HUANG W, YU L M, LI W H, MA Z L. Synthesis of methanol and ethanol over CuZnAl slurry catalyst prepared by complete liquid-phase technology[J]. Front Chem Eng China, 2010,4(4):472-475.
YU Shi-rui. Study on the preparation and performance of Cu-based catalyst for ethanol synthesis in slurry reactor[D]. Taiyuan: Taiyuan University of Technology, 2013.
LIU Yong-jun. Study on the ethanol synthesis from syngas over CuZnAl catalysts[D]. Taiyuan: Taiyuan University of Technology, 2016.
DONG Wei-bing. Effect of heat treatment conditions on catalytic performance of CuZnAl catalysts for higher alcohol synthesis[D]. Taiyuan: Taiyuan University of Technology, 2017.
SCHULZ H. Short history and present trends of Fischer-Tropsch synthesis[J]. Appl Catal A:Gen, 1999,186(1/2):3-12.
YE Tong-qi, ZHANG Zhao-xia, XU Yong, YAN Shi-zhi, ZHU Jiu-fang, LIU Yong, LI Quan-xin. Higher alcohol synthesis from bio-syngas over Na-promoted CuCoMn catalyst[J]. Acta Phys-Chim Sin, 2011,27(6):1493-1500. doi: 10.3866/PKU.WHXB20110610
BOZ I. Higher alcohol synthesis over a K-promoted Co2O3/CuO/ZnO/Al2O3 catalyst[J]. Catal Lett, 2003,87(3/4):187-194. doi: 10.1023/A:1023499324647
LI Z H, ZUO Z J, HUANG W, XIE K C. Research on Si-Al based catalysts prepared by complete liquid-phase method for DME synthesis in a slurry reactor[J]. Appl Surf Sci, 2011,257(6):2180-2183. doi: 10.1016/j.apsusc.2010.09.069
SUH Y W, MOON S H, RHEE H K. Active sites in Cu/ZnO/ZrO2 catalysts for methanol synthesis from CO/H2[J]. Catal Today, 2000,63(2/4):447-452.
GAO W, ZHAO Y F, LIU J M, HUANG Q W, HE S, LI C M, ZHAO J W, WEI M. Catalytic conversion of syngas to mixed alcohols over CuFe-based catalysts derived from layered double hydroxides[J]. Catal Sci Technol, 2013,3(5):1324-1332. doi: 10.1039/c3cy00025g
FIGUEIREDO R T, MARTINEZ-ARIAS A, GRANADOS M L, FIERRO J L G. Spectroscopic evidence of Cu-Al interactions in Cu-Zn-Al mixed oxide catalysts used in CO hydrogenation[J]. J Catal, 1998,178(1):146-152.
GAO Zhi-hua, HUANG Wei, LI Jun-fang, YIN Li-hua, XIE Ke-chang. Liquid-phase preparation of DME slurry catalysts using pseudo-boehmite as aluminum source[J]. Chem J Chin Univ, 2009,30(3):534-538. doi: 10.3321/j.issn:0251-0790.2009.03.020
FANG De-ren, LIU Zhong-min, LIU De-chen, ZHANG Hui-min, MENG Shuang-he, WANG Li-gang. Influence of Al salt addition methods on performance of CuO/ZnO/Al2O3 catalysts[J]. Petrochem Technol, 2004,33(11):1041-1045. doi: 10.3321/j.issn:1000-8144.2004.11.008
LIU Y J, ZUO Z J, LIU C B, LI C, DENG X, HUANG W. Higher alcohols synthesis via CO hydrogenation on Cu/Zn/Al/Zr catalysts without alkalis and F-T elements[J]. Fuel Process Technol, 2016,144:186-190. doi: 10.1016/j.fuproc.2016.01.005
DONG Wei-bing, HAO Shu-hong, GAO Zhi-hua. Effect of preheating liquid paraffin on synthesis of higher alcohols by CuZnAl catalyst[J]. Nat Gas Chem Ind, 2017,42(5):27-33. doi: 10.3969/j.issn.1001-9219.2017.05.006
MAO Dong-sen, GUO Qiang-sheng, YU Jun, HAN Lu-peng, LU Guan-zhong. Effect of cerium addition on the catalytic performance of Cu-Fe/SiO2 for the synthesis of lower alcohols from syngas[J]. Acta Phys-Chim Sin, 2011,27(11):2639-2645. doi: 10.3866/PKU.WHXB20111125
XU Hui-yuan, CHU Wei, SHI Li-min, ZHANG Hui, DENG Si-yu. Effect of glow discharge plasma on copper-cobalt-aluminum catalysts for higher alcohols synthesis[J]. J Fuel Chem Technol, 2009,37(2):212-216. doi: 10.3969/j.issn.0253-2409.2009.02.016
CHU W, KIEFFER R, KIENNEMANN A, HINDERMANN J P. Conversion of syngas to C1-C6 alcohol mixtures on promoted CuLa2Zr2O7 catalysts[J]. Appl Catal A:Gen, 1995,27(121):95-111.
OKAMOTO Y, FUKINO K, IMANAKA T, TERANISHI S. Surface characterization of copper(Ⅱ) oxide-zinc oxide methanol-synthesis catalysts by x-ray photoelectron spectroscopy. 2. Reduced catalysts[J]. J Phys Chem, 1983,87(19):3740-3747. doi: 10.1021/j100242a034
FAN Jin-chuan, YANG Rui-qing, ZHAO Jie, HUANG Wei. Chemical change of copper species in liquid paraffin[J]. Chin J Appl Chem, 2013,30(1):67-72.
LV Xiao-dong. The study of preparation and synthesis of ethanol of Cu-Zn-Al catalyst by complete liquid-phase technology[D]. Taiyuan: Taiyuan University of Technology, 2015.
SUN Kai, ZHANG Xiao-yu, ZHANG Lin, BIAN Zhong-kai, HUANG Wei, ZHAO Zhi-huan. Influence of acidic and alkaline silica sols on the performance of Cu/Zn/Al slurry catalysts[J]. J Fuel Chem Technol, 2015,43(10):1221-1229. doi: 10.3969/j.issn.0253-2409.2015.10.010
MA Qiang, HUANG Wei, FAN Jin-chuan, ZHAO Jie, REN Jie. Study on the deactivation of Cu-Zn-Si-Al slurry catalyst prepared by complete liquid-phase for one-step dimethyl ether synthesis[J]. J Mol Catal(China), 2009,23(6):499-505.
GAO Z H, LIU Y, LI L L, LI S S, HUANG W. CuZnAl catalysts prepared by precipitation-hydrothermal method for higher alcohols synthesis from syngas[J]. Energy Source Part A, 2017,39(6):1-7.
LIU Jian-guo, DING Ming-yue, WANG Tie-jun, MA Long-long. Structure and performance of Cu-Fe bimodal support for higher alcohol syntheses[J]. Acta Phys-Chim Sin, 2012,28(8):1964-1970. doi: 10.3866/PKU.WHXB201205213
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
Xiaofang Li , Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080
Wenhao Chen , Muxuan Wu , Han Chen , Lue Mo , Yirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
Yanxue Wu , Xijun Xu , Shanshan Shi , Fangkun Li , Shaomin Ji , Jingwei Zhao , Jun Liu , Yanping Huo . Facile construction of Cu2-xSe@C nanobelts as anode for superior sodium-ion storage. Chinese Chemical Letters, 2025, 36(6): 110062-. doi: 10.1016/j.cclet.2024.110062
(a): CO conversion as a function of reaction time;
(b): higher alcohols mass fraction in total alcohols as a function of reaction time reaction conditions: 280 ℃, 4.0 MPa, V(H2)/V(CO) = 2, feed flow rate = 150 mL/min
(a): alcohols; (b): hydrocarbons
(a): fresh ones before reaction; (b): spent ones after reaction