Promotion effect of tungsten addition on N2 selectivity of MnOx-Fe2O3 for NH3-SCR
- Corresponding author: ZHANG Qiu-lin, qiulinzhang_kmust@163.com
Citation:
WANG Ji-feng, WANG Hui-min, ZHANG Ya-qing, ZHANG Qiu-lin, NING Ping. Promotion effect of tungsten addition on N2 selectivity of MnOx-Fe2O3 for NH3-SCR[J]. Journal of Fuel Chemistry and Technology,
;2019, 47(7): 814-822.
BOSCH H, JASSEN F. Catalytic reduction of nitrogen oxides. A review on the fundamentals and technology[J]. Catal Today, 1988,4:369-532.
LIETTIA L, RAMISB G, BERTI F, TOLEDOC G, ROBBAC D, BUSCAB G, FORZATTI P. Chemical, structural and mechanistic aspects on NOx SCR over commercial and model oxide catalysts[J]. Catal Today, 1998,42:101-116. doi: 10.1016/S0920-5861(98)00081-9
RAMIS G, BUSCA G. On the effect of dopants and additives on the state of surface vanadyl centers of vanadia-titania catalysts[J]. Catal Lett, 1993,18:299-303. doi: 10.1007/BF00769450
BYRNE J W, CHEN J M, SPERONELLO B K. Selective catalytic reduction of NOx using zeolitic catalysts for high temperature applications[J]. Catal Today, 1992,13:33-42. doi: 10.1016/0920-5861(92)80185-P
WING C W, NOBE K. Reduction of NO with NH3 on Al2O3-and TiO2-supported metal oxide[J]. Ind Eng Chem Prod Res Dev, 1986,25:179-186. doi: 10.1021/i300022a010
ZHANG C A, CHEN T H, LIU H B, CHEN D, XU B, QING C S. Low temperature SCR reaction over nano-structured Fe-Mn oxides:Characterization, performance, and kinetic study[J]. Appl Sur Sci, 2018,457:1116-1125. doi: 10.1016/j.apsusc.2018.07.019
CHEN X H, ZHENG Y Y, ZHANG Y B. MnO2-Fe2O3 catalysts supported on polyphenylene sulfide filter felt by a redox method for the low-temperature NO reduction with NH3[J]. Catal Commun, 2018,105:16-19. doi: 10.1016/j.catcom.2017.09.006
WANG Z, SHEN G L, LI J Q, LIU H D, WANG Q, CHEN Y F. Catalytic removal of benzene over CeO2-MnOx composite oxides prepared by hydrothermal method[J]. Appl Catal B:Environ, 2013,138-139:253-259. doi: 10.1016/j.apcatb.2013.02.030
ZHANG D S, ZHANG L, SHI L Y, FANG C. In situ supported MnO(x)-CeO(x) on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH3[J]. Nanoscale, 2013,5(3):1127-1136. doi: 10.1039/c2nr33006g
LIU F D, HE H, ZHANG C B, FENG Z C, ZHENG L R, XIE Y M, HU T D. Selective catalytic reduction of NO with NH3 over iron titanate catalyst:Catalytic performance and characterization[J]. Appl Catal B:Environ, 2010,96(3/4):408-420.
YAO X J, ZHANG L, LI L L, LIU L C, CAO Y, DONG X, GAO F, DENG Y, TANG C J, CHEN Z, DONG L, CHEN Y. Investigation of the structure, acidity, and catalytic performance of CuO/Ti0.95Ce0.05O2 catalyst for the selective catalytic reduction of NO by NH3 at low temperature[J]. Appl Catal B:Environ, 2014,150/151:315-329. doi: 10.1016/j.apcatb.2013.12.007
YAO X J, KONG T T, YU S H, LI L L, YANG F M, DONG L. Influence of different supports on the physicochemical properties and denitration performance of the supported Mn-based catalysts for NH3-SCR at low temperature[J]. Appl Sur Sci, 2017,402:208-217. doi: 10.1016/j.apsusc.2017.01.081
SINGOREDJO L, KORVER R, KAPTEQN F, MOUHJN J. Alumina supported manganese oxides for the low temperature selective catalytic reduction of nitric oxide with ammonia[J]. Appl Catal B:Environ, 1992,1:297-316. doi: 10.1016/0926-3373(92)80055-5
SHI Y N, CHEN S, SUN H, SHU Y, QUAN X. Low-temperature selective catalytic reduction of NOx with NH3 over hierarchically macro-mesoporous Mn/TiO2[J]. Catal Commun, 2013,42:10-13. doi: 10.1016/j.catcom.2013.07.036
LIN Q C, LI J H, MA L, HAO J M. Selective catalytic reduction of NO with NH3 over Mn-Fe/USY under lean burn conditions[J]. Catal Today, 2010,151(3/4):251-256.
LIU F D, HE H, ZHANG C B. Novel iron titanate catalyst for the selective catalytic reduction of NO with NH3 in the medium temperature range[J]. Chem Commun, 2008,17:2043-2045.
XIONG Z B, LU C M, GUO D X, ZHANG X L, HAN K H. Selective catalytic reduction of NOx with NH3 over iron-cerium mixed oxide catalyst:Catalytic performance and characterization[J]. J Chem Technol Biot, 2013,88(7):1258-1265. doi: 10.1002/jctb.2013.88.issue-7
ZHANG P, LI D X. Selective catalytic reduction of NO with NH3 over iron-vanadium mixed oxide catalyst[J]. Catal Lett, 2014,144(5):959-963. doi: 10.1007/s10562-014-1203-y
APOSTOLESCU N, GEIGERAK B, HIZBULLAH K, JANC M T, KURETI S, REICHERT D, SCHOTT F, WEISWEILER W. Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts[J]. Appl Catal B:Environ, 2006,62(1/2):104-114.
AI-ZENG M, GRVNERT W. Selective catalytic reduction of NO by ammonia over Fe-ZSM-5 catalysts[J]. Chem Commun, 1999:71-72.
SUN W B, LI X Y, ZHAO Q, MU J C, CHEN J H. Fe-Mn mixed oxide catalysts synthesized by one-step urea-precipitation method for the selective catalytic reduction of NOx with NH3 at low temperatures[J]. Catal Lett, 2017,148(1):227-234.
CHEN Z H, WANG F R, LI H, YANG Q, WANG L F, LI X H. Low-temperature selective catalytic reduction of NOx with NH3 over Fe-Mn mixed-oxide catalysts containing Fe3Mn3O8 phase[J]. Ind Eng Chem Res, 2011,51(1):202-212.
PARK H, SHIN B, LEE H. Catalytic activity and surface characteristics of WO3-doped MnOx-TiO2 catalysts for low-temperature selective catalytic reduction of NOx with NH3[J]. J Korean Inst Met Mater, 2016,54(10):787-792. doi: 10.3365/KJMM.2016.
WANG X M, LI X Y, ZHAO Q D, SUN W B, TADE M, LIU S M. Improved activity of W-modified MnOx-TiO2 catalysts for the selective catalytic reduction of NO with NH3[J]. Chem Eng J, 2016,288:216-222. doi: 10.1016/j.cej.2015.12.002
SHI J, ZHANG Z H, CHEN M X, ZHANG Z X, SHANG GUAN W F. Promotion effect of tungsten and iron co-addition on the catalytic performance of MnOx/TiO2 for NH3-SCR of NOx[J]. Fuel, 2017,210:783-789. doi: 10.1016/j.fuel.2017.09.035
SHIN B, LEE H, PARK H. Catalytic activity and surface characteristics of WO3-doped MnOx-TiO2 catalysts for low-temperature selective catalytic reduction of NOx with NH3[J]. Korean J Met Mater, 2016,54:787-792. doi: 10.3365/KJMM.2016.
CHOUNG J W, NAM I S, HAM S W. Effect of promoters including tungsten and barium on the thermal stability of V2O5/sulfated TiO2 catalyst for NO reduction by NH3[J]. Catal Today, 2006,111(3/4):242-247.
LIU F D, SHAN W P, LIAN Z H, XIE L J, HE H. Novel MnWOx catalyst with remarkable performance for low temperature NH3-SCR of NOx[J]. Catal Sci Technol, 2013,3(10):2699-2707. doi: 10.1039/c3cy00326d
SHAN W P, LIU F D, HE H, SHI X Y, ZHANG C B. Novel cerium-tungsten mixed oxide catalyst for the selective catalytic reduction of NO(x) with NH3[J]. Chem Commun, 2011,47(28):8046-8048. doi: 10.1039/c1cc12168e
SHAN W P, GENG Y, CHEN X L, HUANG N, LIU F D, YANG S J. A highly efficient CeWOx catalyst for the selective catalytic reduction of NOx with NH3[J]. Catal Sci Technol, 2016,6(4):1195-1200. doi: 10.1039/C5CY01282A
HEINZ W, ULRIKE G, PAUL R M, BRIAN B B. Immunocytochemical characterization and spatial distribution of midget bipolar cells in the macaque monkey retina[J]. Vision Res, 1994,34:561-579. doi: 10.1016/0042-6989(94)90013-2
WANG Qi-ying, LIU Zi-li, ZOU Han-bo, ZHAO Chao-hui, WEI Xing-chuan. Effect of surfactant modification on desulfurization performance of Zn/Ti-PILCs adsorbent[J]. J Fuel Chem Technol, 2011,39(3):203-206. doi: 10.3969/j.issn.0253-2409.2011.03.008
LEE J, KWAK S Y. Mn-doped maghemite (γ-Fe2O3) from metal-organic framework accompanying redox reaction in a bimetallic system:The structural phase transitions and catalytic activity toward NOx removal[J]. ACS Omega, 2018,3:2634-2640. doi: 10.1021/acsomega.7b01865
ZHANG Xin-li, WANG Dong, PENG Jian-sheng, LU Chun-mei, XU Li-ting. Effect of calcination temperature on structure of Mn Modified γ-Fe2O3 catalyst and denitration activity of low temperature SCR[J]. J Fuel Chem Technol, 2015,43(2):244-250.
LEE J, KWAK S Y. Mn-doped maghemite (γ-Fe2O3) from metal-organic framework accompanying redox reaction in a bimetallic system:The structural phase transitions and catalytic activity toward NOx removal[J]. ACS Omega, 2018,3(3):2634-2640. doi: 10.1021/acsomega.7b01865
WANG F, GUI K T, YAO G H. The comparison about selective catalytic reduction of De-NOx on iron-based magnetic materials[C]. Proceedings of the Chinese Society of Electrical Engineering, 2009, 29: 47-51.
WANG Dong. Preparation of Synth-maghemite (γ-Fe2O3) Catalyst and Optimization of NH3-SCR Performance[D]. Jinan: Shan Dong University, 2016.
CHEN Jia-ning, LIU Yong-mei. Effect of synergistic effect of K and Mn additives on the performance of CO-hydrogenation of low-carbon olefins over Fe-based catalysts[J]. J Fuel Chem Technol, 2013,41(12):1488-1494.
SHEBANOVA O N, LAZOR P. Raman study of magnetite (Fe3O4):Laser-induced thermal effects and oxidation[J]. J Raman Spectr, 2003,34(11):845-852. doi: 10.1002/(ISSN)1097-4555
LI Y, LI Y P, WANG P F, HU W P, ZHANG S G, SHI Q, ZHAN S H. Low-temperature selective catalytic reduction of NOx with NH3 over MnFeOx nanorods[J]. Chem Eng J, 2017,330:213-222. doi: 10.1016/j.cej.2017.07.018
RAMESH K, CHEN L W, CHEN F X, LIU Y, WANG Z, HAN Y F. Re-investigating the CO oxidation mechanism over unsupported MnO, Mn2O3 and MnO2 catalysts[J]. Catal Today, 2008,131(1/4):477-482.
CASAPU M, KRÖCHER O, ELSENER M. Screening of doped MnOxCeO2 catalysts for low-temperature NO-SCR[J]. Appl Catal B:Environ, 2009,88(3/4):413-419.
SONG Zhong-xian, NING Ping, LI Hao, ZHANG Qiu-lin, ZHANG Teng-fei, HUANG Zhen-zhen. Effect of different Ce/Mn molar ratios on the selective catalytic reduction of NO by CeO2-MnOx catalyst at low temperature NH3[J]. J Mol Catal, 2015, 29(5): 422-429.
XU H D, LIN Q J, WANG Y, LAN L, WANG J L, CHEN Y Q. Promotional effect of niobium substitution on the low-temperature activity of a WO3/CeZrOx monolithic catalyst for the selective catalytic reduction of NOx with NH3[J]. RSC Adv, 2017,7:47570-47582. doi: 10.1039/C7RA08429C
WANG J P, YAN Z, LIU L L, CHEN Y, ZHANG Z T, WANG X D. In situ DRIFTS investigation on the SCR of NO with NH3 over V2O5 catalyst supported by activated semi-coke[J]. Appl Surf Sci, 2014,313:660-669. doi: 10.1016/j.apsusc.2014.06.043
CHEN L, LI J H, GE M F, MA L, CHANG H Z. Mechanism of selective catalytic reduction of NOx with NH3 over CeO2-WO3 catalysts[J]. Chin J Catal, 2011,32:836-841. doi: 10.1016/S1872-2067(10)60195-7
LIU F D, HE H, ZHANG C B, SHAN W B, SHI X Y. Mechanism of the selective catalytic reduction of NOx with NH3 over environmental-friendly iron titanate catalyst[J]. Catal Today, 2011,175(1):18-25.
KANTCHEVA M. Identification stability and reactivity of NOx species adsorbed on titania-supported manganese catalysts[J]. J Catal, 2001,204(2):479-494. doi: 10.1006/jcat.2001.3413
LIU Z M, ZHANG S X, LI J H, MA L L. Promoting effect of MoO3 on the NOx reduction by NH3 over CeO2/TiO2 catalyst studied with in situ DRIFTS[J]. Appl Catal B:Environ, 2014,144:90-95. doi: 10.1016/j.apcatb.2013.06.036
MA Z R, WU X D, HANNA HARELIND, WENG D, WANG B D, SI Z C. NH3-SCR reaction mechanisms of NbOx/Ce0.75Zr0.25O2 catalyst:DRIFTS and kinetics studies[J]. J Mol Catal A:Chem, 2016,423:172-180. doi: 10.1016/j.molcata.2016.06.023
ZHANG R D, YANG W, LUO N, LI P X, LEI Z G, CHEN B H. Low-temperature NH3-SCR of NO by lanthanum manganite perovskites:Effect of A-/B-site substitution and TiO2/CeO2 support[J]. Appl Catal B:Environ, 2014,146:94-104. doi: 10.1016/j.apcatb.2013.04.047
TANABE K. Catalytic application of niobium compounds[J]. Catal Today, 2003,78(1/4):65-77.
ZIOLEK M. Niobium-containing catalysts the state of the art[J]. Catal Today, 2003,78(1/4):47-64.
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
Jun Dong , Senyuan Tan , Sunbin Yang , Yalong Jiang , Ruxing Wang , Jian Ao , Zilun Chen , Chaohai Zhang , Qinyou An , Xiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
Jun Huang , Pengfei Nie , Yongchao Lu , Jiayang Li , Yiwen Wang , Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066
Hui Wang , Abdelkader Labidi , Menghan Ren , Feroz Shaik , Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007